87 research outputs found

    Selection Mechanisms Underlying High Impact Biomedical Research - A Qualitative Analysis and Causal Model

    Get PDF
    BACKGROUND: Although scientific innovation has been a long-standing topic of interest for historians, philosophers and cognitive scientists, few studies in biomedical research have examined from researchers' perspectives how high impact publications are developed and why they are consistently produced by a small group of researchers. Our objective was therefore to interview a group of researchers with a track record of high impact publications to explore what mechanism they believe contribute to the generation of high impact publications. METHODOLOGY/PRINCIPAL FINDINGS: Researchers were located in universities all over the globe and interviews were conducted by phone. All interviews were transcribed using standard qualitative methods. A Grounded Theory approach was used to code each transcript, later aggregating concept and categories into overarching explanation model. The model was then translated into a System Dynamics mathematical model to represent its structure and behavior. Five emerging themes were found in our study. First, researchers used heuristics or rules of thumb that came naturally to them. Second, these heuristics were reinforced by positive feedback from their peers and mentors. Third, good communication skills allowed researchers to provide feedback to their peers, thus closing a positive feedback loop. Fourth, researchers exhibited a number of psychological attributes such as curiosity or open-mindedness that constantly motivated them, even when faced with discouraging situations. Fifth, the system is dominated by randomness and serendipity and is far from a linear and predictable environment. Some researchers, however, took advantage of this randomness by incorporating mechanisms that would allow them to benefit from random findings. The aggregation of these themes into a policy model represented the overall expected behavior of publications and their impact achieved by high impact researchers. CONCLUSIONS: The proposed selection mechanism provides insights that can be translated into research coaching programs as well as research policy models to optimize the introduction of high impact research at a broad scale among institutional and governmental agencies

    Genomewide Analyses Define Different Modes of Transcriptional Regulation by Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ)

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with essential functions in lipid, glucose and energy homeostasis, cell differentiation, inflammation and metabolic disorders, and represent important drug targets. PPARs heterodimerize with retinoid X receptors (RXRs) and can form transcriptional activator or repressor complexes at specific DNA elements (PPREs). It is believed that the decision between repression and activation is generally governed by a ligand-mediated switch. We have performed genomewide analyses of agonist-treated and PPARβ/δ-depleted human myofibroblasts to test this hypothesis and to identify global principles of PPARβ/δ-mediated gene regulation. Chromatin immunoprecipitation sequencing (ChIP-Seq) of PPARβ/δ, H3K4me3 and RNA polymerase II enrichment sites combined with transcriptional profiling enabled the definition of 112 bona fide PPARβ/δ target genes showing either of three distinct types of transcriptional response: (I) ligand-independent repression by PPARβ/δ; (II) ligand-induced activation and/or derepression by PPARβ/δ; and (III) ligand-independent activation by PPARβ/δ. These data identify PPRE-mediated repression as a major mechanism of transcriptional regulation by PPARβ/δ, but, unexpectedly, also show that only a subset of repressed genes are activated by a ligand-mediated switch. Our results also suggest that the type of transcriptional response by a given target gene is connected to the structure of its associated PPRE(s) and the biological function of its encoded protein. These observations have important implications for understanding the regulatory PPAR network and PPARβ/δ ligand-based drugs

    Down the line from genome-wide association studies in inflammatory bowel disease:the resulting clinical benefits and the outlook for the future

    Get PDF
    Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis, is a chronic inflammatory disease of the gut. The etiology of IBD is complex, involving genetic as well as environmental factors. Genetic studies have identified 163 genetic risk loci for IBD, which have led to new insights into the biological mechanisms of the disease. The currently known IBD risk loci show an almost 75% overlap with genetic risk loci for other immune mediated diseases. Current studies are focused on the translation of the identified risk loci to clinical practice. The first steps towards this translation are being taken with the identification of genetic risk factors for drugs toxicity, specific disease course and response to therapy. In this review we will discuss how the IBD genetic risk loci were identified and how this knowledge can be translated towards clinical practice

    Antiviral Silencing and Suppression of Gene Silencing in Plants

    Get PDF
    RNA silencing is an evolutionary conserved sequence-specific gene inactivation mechanism that contributes to the control of development, maintains heterochromatin, acts in stress responses, DNA repair and defends against invading nucleic acids like transposons and viruses. In plants RNA silencing functions as one of the main immune systems. RNA silencing process involves the small RNAs and trans factor components like Dicers, Argonautes and RNA-dependent RNA poly- merases. To deal with host antiviral silencing responses viruses evolved mecha- nisms to avoid or counteract this, most notably through expression of viral suppressors of RNA silencing. Due to the overlap between endogenous and antiviral silencing pathways while blocking antiviral pathways viruses also impact endogenous silencing processes. Here we provide an overview of antiviral silencing pathway, host factors implicated in it and the crosstalk between antiviral and endogenous branches of silencing. We summarize the current status of knowledge about the viral counter-defense strategies acting at various steps during virus infection in plants with the focus on representative, well studied silencing suppres- sor proteins. Finally we discuss future challenges of the antiviral silencing and counter-defense research field

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201
    corecore