11 research outputs found

    Biological indicators of stress in pacu (Piaractus mesopotamicus) after capture

    No full text
    The effects of capture (chasing, netting and air exposure) on cortisol, glucose, chloride, sodium, potassium and calcium concentrations, osmolality, hematocrit, hemoglobin concentration, red blood cells count (RBC) and mean corpuscular volume (MCV) were investigated in pacu (Piaractus mesopotamicus). A total of 132 fish (49.7 ± 11.7 g) were subjected to capture and 3 minutes air exposure and capture and 5 minutes air exposure. Nine fish at each treatment were sampled at 5, 15, 30, 60 minutes and 24 hours after the procedure. Nine undisturbed fish were sacrificed before the handling and used as controls. Capture resulted in a rise in blood cortisol and glucose 30 and 5 minutes, respectively, after both air exposures. Both indicators returned to resting levels 24 hours after capture. In both fish groups, plasma chloride decreased 60 minutes after capture, not recovering the resting levels within 24 hours after, and serum sodium rose at 15 and 30 minutes and recovered the resting levels 24 hours later. There were no significant changes neither in potassium, calcium and osmolality nor in hematocrit, hemoglobin, RBC and MCV as a consequence of capture. The sequential stressors imposed to pacu during capture activated the brain-pituitary-interrenal axis (cortisol and glucose responses) but the activation of the brain-sympathetic-chromaffin cell axis was apparently moderate (ionic and hematological responses)

    The Prophenoloxidase Activating System: A Common Defence Pathway for Deuterostomes and Protostomes?

    No full text

    Novel methodologies in marine fish larval nutrition

    No full text
    Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of 14C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for different species of larval fish
    corecore