43 research outputs found

    Interleukin-4 enhances proliferation of human pancreatic cancer cells: evidence for autocrine and paracrine actions

    Get PDF
    Interleukin-4 (IL-4) is an immunomodulatory cytokine, which can inhibit the growth of tumour cells. Pancreatic cancer cells and tissues express high levels of IL-4 receptors. The aim of this study was to characterise the effects of IL-4 on the growth and signalling pathways of pancreatic cancer cells. Cell growth was determined by cell counting and MTT assays in association with fluorescence-activated cell sorter analysis, IL-4 expression using ELISA and real-time PCR techniques, and signal transduction using immunoprecipitation or immunoblot analysis. We now report for the first time that IL-4 significantly enhanced the growth of five out of six cultured pancreatic cancer cell lines in a dose-dependent manner in association with an increased fraction of cells in S-phase. Surprisingly, all six cell lines expressed endogenous IL-4, and IL-4 was detectable in the supernatant. Incubating cells with neutralising IL-4 antibodies resulted in a significant inhibition of basal growth in three cell lines, including IL-4-unresponsive MIA PaCa-2 cells, which however expressed the highest endogenous IL-4 levels. Interleukin-4 enhanced activity of MAPK, Akt-1, and Stat3 in IL-4-responsive, but not in IL-4-unresponsive MIA PaCa-2 cells; however, IL-4 enhanced tyrosine phosphorylation of insulin receptor substrate-1 and -2 in all cell lines. Our results demonstrate for the first time that pancreatic cancer cells produce IL-4 and that IL-4 can act as a growth factor in pancreatic cancer cells. Together with the observation that neutralising IL-4 antibodies can inhibit the growth of these cells, our results suggest that IL-4 may act as an autocrine growth factor in pancreatic cancer cells and also give rise to the possibility that cancer-derived IL-4 may suppress cancer-directed immunosurveillance in vivo in addition to its growth-promoting effects, thereby facilitating pancreatic tumour growth and metastasis

    Genetic Population Structure in the Antarctic Benthos: Insights from the Widespread Amphipod, Orchomenella franklini

    Get PDF
    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1–10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (FST = 0.086, RST = 0.139, p<0.001) consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with Nem≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Patient-reported outcomes in patients with overactive bladder treated with mirabegron and tolterodine in a prospective, double-blind, randomized, two-period crossover, multicenter study (PREFER)

    No full text
    Abstract Background The PREFER study was an assessment of medication tolerability, treatment preference and symptom improvement during treatment with mirabegron (M) and tolterodine (T) extended release (ER) in patients with overactive bladder (OAB). In this analysis of PREFER, patient-reported outcomes (PROs) were assessed during treatment. Methods PREFER was a two-period, 8-week crossover, double-blind, phase IV study (NCT02138747) of treatment-naïve adults with OAB ≥3 months randomized to 1 of 4 treatment sequences (M/T; T/M; M/M; T/T), separated by a 2-week washout. Tolterodine ER was dosed at 4 mg for 8 weeks and mirabegron was dosed at 25 mg for 4 weeks then increased to 50 mg for the next 4 weeks. At each visit, PROs related to treatment satisfaction, quality of life and symptom bother were assessed using the OAB Satisfaction (OAB-S; 3 independent scales/5 single-item overall assessments), OAB-q (total health-related QoL [HRQoL] and subscales [Sleep, Social, Coping, Concern] and Symptom Bother scale) and Patient Perception of Bladder Condition (PPBC) questionnaires. Responder rates were reported for OAB-q subscales based on a minimal important difference (MID; ≥ 10-point improvement) and OAB-S Medication Tolerability score ≥ 90. Results In total, 358 randomized patients received ≥1 dose of double-blind study medication and completed ≥1 post-baseline value (OAB-S scale, OAB-q, PPBC): M/T (n = 154), T/M (n = 144), M/M (n = 30) or T/T (n = 30). At end of treatment (EoT), mirabegron and tolterodine ER were associated with similar mean improvements in 7 of the 8 OAB-S scores investigated, OAB-q scales and PPBC. A higher percentage of patients achieved clinically relevant improvements (MID) in OAB-q scales and OAB-S Medication Tolerability score during treatment with mirabegron than tolterodine ER. Conclusions On average, patients with OAB experienced improvements in treatment satisfaction, HRQoL and symptom bother that were of a similar magnitude during treatment with mirabegron or tolterodine ER. However, during mirabegron treatment, patients were more likely to achieve clinically relevant improvements in tolerability and HRQoL (as measured by the MID for the OAB-q or an OAB-S Medication Tolerability score ≥ 90) than during tolterodine ER treatment. Trial registration NCT02138747; registered May 13, 2014
    corecore