544 research outputs found

    Molecular Docking Studies of Coronavirus Proteins with Medicinal Plant Based Phytochemicals

    Get PDF
    In this study, we presented an in silico molecular docking between the SARS-CoV-2 four proteins [(a) SARS-CoV-2 nucleocapsid protein N-terminal RNA binding domain (6M3M), (b) Nsp9 RNA binding protein of SARS CoV-2 (6W4B), (c) The crystal structure of COVID-19 main protease in apo form (6M03), and (d) Structure of the 2019-nCoV HR2 Domain (6LVN)] available in the PDB (Protein Data Bank), and the medicinal plant-based phytochemicals (retrieved from PubChem database) as ligand molecules i.e. Piperine (Black Pepper), Eugenol (Clove), Alliin (Garlic), Gingerol (Ginger) and Curcumin (Turmeric). All these ligand molecules showed good docking with their respective receptor molecules and their scores range from -8.195 to -5.263. DockThor Portal (a receptor ligand-docking server) which was recently developed and published this year were used in the current study. The obtained results might help in the wet lab conditions to develop better antiviral compounds against SARS-CoV-2

    Allelic relationships of flowering time genes in chickpea

    Get PDF
    Flowering time and crop duration are the most important traits for adaptation of chickpea (Cicer arietinum L.) to different agro-climatic conditions. Early flowering and early maturity enhance adaptation of chickpea to short season environments. This study was conducted to establish allelic relationships of the early flowering genes of ICC 16641, ICC 16644 and ICCV 96029 with three known early flowering genes, efl-1 (ICCV 2), ppd or efl-2 (ICC 5810), and efl-3 (BGD 132). In all cases, late flowering was dominant to early-flowering. The results indicated that the efl-1 gene identified from ICCV 2 was also present in ICCV 96029, which has ICCV 2 as one of the parents in its pedigree. ICC 16641 and ICC 16644 had a common early flowering gene which was not allelic to other reported early flowering genes. The new early flowering gene was designated efl-4. In most of the crosses, days to flowering was positively correlated with days to maturity, number of pods per plant, number of seeds per plant and seed yield per plant and negatively correlated or had no correlation with 100-seed weight. The double-pod trait improved grain yield per plant in the crosses where it delayed maturity. The information on allelic relationships of early flowering genes and their effects on yield and yield components will be useful in chickpea breeding for desired phenology

    Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)

    Get PDF
    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement

    Anti-malarial activity of Holarrhena antidysenterica and Viola canescens, plants traditionally used against malaria in the Garhwal region of north-west Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing number of multidrug-resistant <it>Plasmodium </it>strains warrants exploration of new anti-malarials. Medicinal plant research has become more important, particularly after the development of Chinese anti-malarial drug artemisnin from <it>Artemisia annua</it>. The present study shows evaluation of anti-malarial effects of two plants commonly used against malaria in the Garhwal region of north-west Himalaya, in order to discover the herbal-based medicine.</p> <p>Methods</p> <p><it>In vitro </it>anti-plasmodial sensitivity of plant extracts was assessed using schizont maturation and parasite lactate dehydrogenase (pLDH) assay. Cytotoxic activities of the examined extracts were determined on L-6 cells of rat skeletal muscle myoblast. The 4-day test for anti-malarial activity against a chloroquine sensitive <it>Plasmodium berghei </it>NK65 strain in Swiss albino mice was used for monitoring <it>in vivo </it>activity of plant extracts.</p> <p>Results</p> <p>Chloroform extract of <it>H. antidysenterica </it>(HA-2) and petroleum ether extract of <it>V. canescens </it>(VC-1) plants significantly reduced parasitaemia in <it>P. berghei </it>infected mice. The extract HA-2 showed <it>in vitro </it>anti-plasmodial activity with its IC<sub>50 </sub>value 5.5 ÎĽg/ml using pLDH assay and ED<sub>50 </sub>value 18.29 mg/kg in <it>P. berghei </it>infected Swiss albino mice. Similarly petroleum ether extract of <it>V. canescens </it>(VC-1) showed <it>in vitro </it>anti-plasmodial activity with its IC<sub>50 </sub>value 2.76 ÎĽg/ml using pLDH assay and ED<sub>50 </sub>15.8 mg/kg in <it>P. berghei </it>infected mice. The extracts coded as HA-2 at 30 mg/kg and VC-1 at 20 mg/kg exhibited parasite inhibition in mice: 73.2% and 63.0% respectively. Of these two plant extracts, petroleum ether extract of <it>V. canescens </it>was found slightly cytotoxic.</p> <p>Conclusion</p> <p>The present investigation reflects the use of these traditional medicinal plants against malaria and these plants may work as potential source in the development of variety of herbal formulations for the treatment of malaria.</p

    Inheritance and relationships of flowering time and seed size in kabuli chickpea

    Get PDF
    Flowering time and seed size are the important traits for adaptation in chickpea. Early phenology (time of flowering, podding and maturity) enhance chickpea adaptation to short season environments. Along with a trait of consumer preference, seed size has also been considered as an important factor for subsequent plant growth parameters including germination, seedling vigour and seedling mass. Small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) to study inheritance of flowering time and seed size. The relationships of phenology with seed size, grain yield and its component traits were studied. The study included parents, F1, F2 and F3 of four crosses. The segregation data of F2 indicated flowering time in chickpea was governed by two genes with duplicate recessive epistasis and lateness was dominant to earliness. Two genes were controlling 100-seed weight where small seed size was dominant over large seed size. Early phenology had significant negative or no association (ICC 16644 × ICC 17109) with 100-seed weight. Yield per plant had significant positive association with number of seeds per plant, number of pods per plant, biological yield per plant, 100-seed weight, harvest index and plant height and hence could be considered as factors for seed yield improvement. Phenology had no correlation with yield per se (seed yield per plant) in any of the crosses studied. Thus, present study shows that in certain genetic background it might be possible to breed early flowering genotypes with large seed size in chickpea and selection of early flowering genotypes may not essentially have a yield penalty

    Identification of priority health conditions for field-based screening in urban slums in Bangalore, India

    Get PDF
    BACKGROUND: Urban slums are characterised by unique challenging living conditions, which increase their inhabitants' vulnerability to specific health conditions. The identification and prioritization of the key health issues occurring in these settings is essential for the development of programmes that aim to enhance the health of local slum communities effectively. As such, the present study sought to identify and prioritise the key health issues occurring in urban slums, with a focus on the perceptions of health professionals and community workers, in the rapidly growing city of Bangalore, India. METHODS: The study followed a two-phased mixed methods design. During Phase I of the study, a total of 60 health conditions belonging to four major categories: - 1) non-communicable diseases; 2) infectious diseases; 3) maternal and women's reproductive health; and 4) child health - were identified through a systematic literature review and semi-structured interviews conducted with health professionals and other relevant stakeholders with experience working with urban slum communities in Bangalore. In Phase II, the health issues were prioritised based on four criteria through a consensus workshop conducted in Bangalore. RESULTS: The top health issues prioritized during the workshop were: diabetes and hypertension (non-communicable diseases category), dengue fever (infectious diseases category), malnutrition and anaemia (child health, and maternal and women's reproductive health categories). Diarrhoea was also selected as a top priority in children. These health issues were in line with national and international reports that listed them as top causes of mortality and major contributors to the burden of diseases in India. CONCLUSIONS: The results of this study will be used to inform the development of technologies and the design of interventions to improve the health outcomes of local communities. Identification of priority health issues in the slums of other regions of India, and in other low and lower middle-income countries, is recommended
    • …
    corecore