6 research outputs found

    Commercial products for osteochondral tissue repair and regeneration

    Get PDF
    The osteochondral tissue represents a complex structure composed of four interconnected structures, namely hyaline cartilage, a thin layer of calcified cartilage, subchondral bone, and cancellous bone. Due to the several difficulties associated with its repair and regeneration, researchers have developed several studies aiming to restore the native tissue, some of which had led to tissue-engineered commercial products. In this sense, this chapter discusses the good manufacturing practices, regulatory medical conditions and challenges on clinical translations that should be fulfilled regarding the safety and efficacy of the new commercialized products. Furthermore, we review the current osteochondral products that are currently being marketed and applied in the clinical setting, emphasizing the advantages and difficulties of each one.FROnTHERA (NORTE-01-0145- FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors would also like to acknowledge H2020-MSCA-RISE program, as this work is part of developments carried out in BAMOS project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement N° 734156. The financial support from the Portuguese Foundation for Science and Technology under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015)info:eu-repo/semantics/publishedVersio

    Tools shape paradigms of plant-environment interactions

    No full text
    The direction of science is often driven by contemporary theory, and theory emerges from consolidated empirical knowledge. What we know emerges from what we explore, and we explore what we have technical tools for. I feel that technical opportunities contributed strongly towards what is held as a contemporary, widely accepted theory. However, the presumed causality may become reverted, if one accounts for those less explored questions, for which tools are missing. Here, I will reflect on decades of research experience in empirical plant sciences, mainly plant water relations, plant carbon relations and biogeography, during which some mainstream paradigms became challenged. Scientific theory passes through waves and cycles and is even linked to fashion. Insight that seemed established at one time may become outdated by novel concepts facilitated by novel methods, and as time progresses, old concepts may find a revival. In the following chapter, I will illustrate such shifts in awareness and misleading paradigms that were driven by the contemporary availability of methods rather than stringent logics. Examples include plant responses to drought stress; the drivers of plant growth in general, as well as in the context of rising atmospheric CO2 concentrations; and how physiological plant ecology can contribute to resolving biogeographical questions such as range limits of plant species and plant life forms. My résumé is that explanations of plant responses to the environment are predominantly below ground and require an understanding of developmental and meristematic processes, whereas available tools often lead to attempts at above-ground answers based on primary metabolism (e.g. photosynthesis). Further, well-understood processes at the organ (leaf) level are losing relevance at the community or ecosystem level, where much less understood mechanisms come into action (e.g. stand density control). While the availability of certain convenient methods can open new research arenas, it may also narrow the scope and may direct theory development towards easily measurable parameters and processes

    Plant functional traits with particular reference to tropical deciduous forests: A review

    No full text

    Biodiversity of Lactic Acid Bacteria

    No full text
    corecore