14 research outputs found

    Interaural Time-Delay Sensitivity in Bilateral Cochlear Implant Users: Effects of Pulse Rate, Modulation Rate, and Place of Stimulation

    No full text
    Electrical interaural time delay (ITD) discrimination was measured using 300-ms bursts applied to binaural pitch matched electrodes at basal, mid, and apical locations in each ear. Six bilateral implant users, who had previously shown good ITD sensitivity at a pulse rate of 100 pulses per second (pps), were assessed. Thresholds were measured as a function of pulse rate between 100 and 1,000 Hz, as well as modulation rate over that same range for high-rate pulse trains at 6,000 pps. Results were similar for all three places of stimulation and showed decreasing ITD sensitivity as either pulse rate or modulation rate increased, although the extent of that effect varied across subjects. The results support a model comprising a common ITD mechanism for high- and low-frequency places of stimulation, which, for electrical stimulation, is rate-limited in the same way across electrodes because peripheral temporal responses are largely place invariant. Overall, ITD sensitivity was somewhat better with unmodulated pulse trains than with high-rate pulse trains modulated at matched rates, although comparisons at individual rates showed that difference to be significant only at 300 Hz. Electrodes presenting with the lowest thresholds at 600 Hz were further assessed using bursts with a ramped onset of 10 ms. The slower rise time resulted in decreased performance in four of the listeners, but not in the two best performers, indicating that those two could use ongoing cues at 600 Hz. Performance at each place was also measured using single-pulse stimuli. Comparison of those data with the unmodulated 300-ms burst thresholds showed that on average, the addition of ongoing cues beyond the onset enhanced overall ITD sensitivity at 100 and 300 Hz, but not at 600 Hz. At 1,000 Hz, the added ongoing cues actually decreased performance. That result is attributed to the introduction of ambiguous cues within the physiologically relevant range and increased dichotic firing

    Using Intermicrophone Correlation to Detect Speech in Spatially Separated Noise

    Get PDF
    This paper describes a system for determining intervals of "high" and "low" signal-to-noise ratios when the desired signal and interfering noise arise from distinct spatial regions. The correlation coefficient between two microphone signals serves as the decision variable in a hypothesis test. The system has three parameters: center frequency and bandwidth of the bandpass filter that prefilters the microphone signals, and threshold for the decision variable. Conditional probability density functions of the intermicrophone correlation coefficient are derived for a simple signal scenario. This theoretical analysis provides insight into optimal selection of system parameters. Results of simulations using white Gaussian noise sources are in close agreement with the theoretical results. Results of more realistic simulations using speech sources follow the same general trends and illustrate the performance achievable in practical situations. The system is suitable for use with two microphones in mild-to-moderate reverberation as a component of noise-reduction algorithms that require detecting intervals when a desired signal is weak or absent.National Institute on Deafness and Other Communication Disorders (U.S.)National Institute on Deafness and Other Communication Disorders (U.S.) (Grant 1-R01-DC00117
    corecore