7 research outputs found

    Inference of the infection status of individuals using longitudinal testing data from cryptic populations: Towards a probabilistic approach to diagnosis

    Get PDF
    Effective control of many diseases requires the accurate detection of infected individuals. Confidently ascertaining whether an individual is infected can be challenging when diagnostic tests are imperfect and when some individuals go for long periods of time without being observed or sampled. Here, we use a multi-event capture-recapture approach to model imperfect observations of true epidemiological states. We describe a method for interpreting potentially disparate results from individuals sampled multiple times over an extended period, using empirical data from a wild badger population naturally infected with Mycobacterium bovis as an example. We examine the effect of sex, capture history and current and historical diagnostic test results on the probability of being truly infected, given any combination of diagnostic test results. In doing so, we move diagnosis away from the traditional binary classification of apparently infected versus uninfected to a probability-based interpretation which is updated each time an individual is re-sampled. Our findings identified temporal variation in infection status and suggest that capture probability is influenced by year, season and infection status. This novel approach to combining ecological and epidemiological data may aid disease management decision-making by providing a framework for the integration of multiple diagnostic test data with other information

    What is a feral cat?

    No full text

    The fecal odor of sick hedgehogs (Erinaceus europaeus) mediates olfactory attraction of the tick Ixodes hexagonus

    No full text
    Parasite loads of animals vary among individuals, but the underlying mechanisms have not been fully identified. Here, we investigated whether health status of hedgehogs (Erinaceus europaeus) is correlated with tick burden, and whether chemical cues linked to the health status of the host mediate attraction of the tick Ixodes hexagonus. An ecological survey conducted over 10 years, involving 226 wild hedgehogs, revealed a strong association between health status and tick burden of hedgehogs, with healthy animals being less likely to carry ticks than unhealthy ones. Behavioral choice tests demonstrated that ticks display a preference for the fecal odor from sick hedgehogs compared with healthy ones. Chemical analysis of fecal odors using gas chromatography - mass spectrometry showed differences in the odor profile between sick and healthy hedgehogs. Sick animals tended to exhibit raised levels of the volatile aromatic heterocyclic compound indole in their feces. Ticks were attracted to indole when given the choice between indole and a solvent control. However, fecal matter from healthy hosts, with the addition of indole, was not attractive to ticks, suggesting that indole interacts with other, undetected compounds in mediating attraction. This study implies that it is the attraction to fecal odor that causes higher tick burdens in sick hedgehogs. Ticks might benefit from this preference by avoiding possible repulsion mechanisms of healthy hosts. We suggest that ticks potentially choose their host based on odor linked to the host's health status
    corecore