118 research outputs found

    Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the permanent daylight conditions north of the Arctic circle, there is a unique opportunity for bumblebee foragers to maximise intake, and therefore colony growth, by remaining active during the entire available 24-h period. We tested the foraging rhythms of bumblebee (<it>Bombus terrestris </it>and <it>B. pascuorum</it>) colonies in northern Finland during the summer, when the sun stays above the horizon for weeks. We used fully automatic radio-frequency identification to monitor the foraging activity of more than 1,000 workers and analysed their circadian foraging rhythms.</p> <p>Results</p> <p>Foragers did not use the available 24-h foraging period but exhibited robust diurnal rhythms instead. A mean of 95.2% of the tested <it>B. terrestris </it>workers showed robust diurnal rhythms with a mean period of 23.8 h. Foraging activity took place mainly between 08:00 and 23:00, with only low or almost no activity during the rest of the day. Activity levels increased steadily during the morning, reached a maximum around midday and decreased again during late afternoon and early evening. Foraging patterns of native <it>B. pascuorum </it>followed the same temporal organisation, with the foraging activity being restricted to the period between 06:00 and 22:00.</p> <p>Conclusions</p> <p>The results of the present study indicate that the circadian clock of the foragers must have been entrained by some external cue, the most prominent being daily cycles in light intensity and temperature. Daily fluctuations in the spectral composition of light, especially in the UV range, could also be responsible for synchronising the circadian clock of the foragers under continuous daylight conditions.</p

    High-sensitivity diamond magnetometer with nanoscale resolution

    Full text link
    We present a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic field imager combining spatial resolution ranging from micrometers to millimeters with a sensitivity approaching few femtotesla/Hz1/2^{1/2}.Comment: 29 pages, 4 figure

    Malnutrition in patients treated for oral or oropharyngeal cancerā€”prevalence and relationship with oral symptoms: an explorative study

    Get PDF
    This study aimed to assess prevalence of malnutrition after treatment for oral/oropharyngeal cancer and to explore how oral symptoms relate to malnutrition after treatment. In this cross-sectional study, malnutrition (weight loss a parts per thousand yenaEuro parts per thousand 10% in 6 months or a parts per thousand yen5% in 1 month), oral symptoms (EORTC QLQ-H&N35 questionnaire and additional questions to assess chewing problems), dental status, trismus and dietary intake were assessed in 116 adult patients treated for oral/oropharyngeal cancer. Prevalence of malnutrition was 16% (95%CI: 10% to 23%). Prevalence of malnutrition in the period 0-3 months after treatment was significantly higher (25%) than in the periods > 3-12 months (13%) and > 12-36 months after treatment (3%, p = 0.008). Logistic multivariate regression analysis revealed that swallowing problems (p = 0.021) and insufficient protein intake were significantly related to malnutrition (p = 0.016). In conclusion, malnutrition is a considerable problem in patients treated for oral/oropharyngeal cancer, shortly after treatment. Of all oral symptoms, only swallowing problems were significantly related to malnutrition in the period after treatment for oral/oropharyngeal cancer

    The combined effect of smoking tobacco and drinking alcohol on cause-specific mortality: a 30 year cohort study

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; Smoking and consuming alcohol are both related to increased mortality risk. Their combined effects on cause-specific mortality were investigated in a prospective cohort study.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; Participants were 5771 men aged 35-64, recruited during 1970-73 from various workplaces in Scotland. Data were obtained from a questionnaire and a screening examination. Causes of death were all cause, coronary heart disease (CHD), stroke, alcohol-related, respiratory and smoking-related cancer. Participants were divided into nine groups according to their smoking status (never, ex or current) and reported weekly drinking (none, 1-14 units and 15 or more). Cox proportional hazards models were used to obtain relative rates of mortality, adjusted for age and other risk factors.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; In 30 years of follow-up, 3083 men (53.4%) died. Compared with never smokers who did not drink, men who both smoked and drank 15+ units/week had the highest all-cause mortality (relative rate = 2.71 (95% confidence interval 2.31-3.19)). Relative rates for CHD mortality were high for current smokers, with a possible protective effect of some alcohol consumption in never smokers. Stroke mortality increased with both smoking and alcohol consumption. Smoking affected respiratory mortality with little effect of alcohol. Adjusting for a wide range of confounders attenuated the relative rates but the effects of alcohol and smoking still remained. Premature mortality was particularly high in smokers who drank 15 or more units, with a quarter of the men not surviving to age 65. 30% of men with manual occupations both smoked and drank 15+ units/week compared with only 13% with non-manual ones.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Smoking and drinking 15+ units/week was the riskiest behaviour for all causes of death.&lt;/p&gt

    PI3Ks Maintain the Structural Integrity of T-Tubules in Cardiac Myocytes

    Get PDF
    Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently.Genetic ablation of both p110Ī± and p110Ī² in cardiac myocytes throughout development or in adult mice caused heart failure and death. Ventricular myocytes from double knockout animals showed transverse tubule (T-tubule) loss and disorganization, misalignment of L-type Ca(2+) channels in the T-tubules with ryanodine receptors in the sarcoplasmic reticulum, and reduced Ca(2+) transients and contractility. Junctophilin-2, which is thought to tether T-tubules to the sarcoplasmic reticulum, was mislocalized in the double PI3K-null myocytes without a change in expression level.PI3K p110Ī± and p110Ī² are required to maintain the organized network of T-tubules that is vital for efficient Ca(2+)-induced Ca(2+) release and ventricular contraction. PI3Ks maintain T-tubule organization by regulating junctophilin-2 localization. These results could have important medical implications because several PI3K inhibitors that target both isoforms are being used to treat cancer patients in clinical trials

    Chronic CaMKII inhibition blunts the cardiac contractile response to exercise training

    Get PDF
    Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role modulating cardiac function in both health and disease. Here, we determined the effect of chronic CaMKII inhibition during an exercise training program in healthy mice. CaMKII was inhibited by KN-93 injections. Mice were randomized to the following groups: sham sedentary, sham exercise, KN-93 sedentary, and KN-93 exercise. Cardiorespiratory function was evaluated by ergospirometry during treadmill running, echocardiography, and cardiomyocyte fractional shortening and calcium handling. The results revealed that KN-93 alone had no effect on exercise capacity or fractional shortening. In sham animals, exercise training increased maximal oxygen uptake by 8% (pĀ <Ā 0.05) compared to a 22% (pĀ <Ā 0.05) increase after exercise in KN-93 treated mice (group difference pĀ <Ā 0.01). In contrast, in vivo fractional shortening evaluated by echocardiography improved after exercise in sham animals only: from 25 to 32% (pĀ <Ā 0.02). In inactive mice, KN-93 reduced rates of diastolic cardiomyocyte re-lengthening (by 25%, pĀ <Ā 0.05) as well as Ca2+ transient decay (by 16%, pĀ <Ā 0.05), whereas no such effect was observed after exercise training. KN-93 blunted exercise training response on cardiomyocyte fractional shortening (63% sham vs. 18% KN-93; pĀ <Ā 0.01 and pĀ <Ā 0.05, respectively). These effects could not be solely explained by the Ca2+ transient amplitude, as KN-93 reduced it by 20% (pĀ <Ā 0.05) and response to exercise training was equal (64% sham and 47% KN-93; both pĀ <Ā 0.01). We concluded that chronic CaMKII inhibition increased time to 50% re-lengthening which were recovered by exercise training, but paradoxically led to a greater increase in maximal oxygen uptake compared to sham mice. Thus, the effect of chronic CaMKII inhibition is multifaceted and of a complex nature

    The Glycosylation Pattern of Common Allergens: The Recognition and Uptake of Der p 1 by Epithelial and Dendritic Cells Is Carbohydrate Dependent

    Get PDF
    Allergens are initiators of both innate and adaptive immune responses. They are recognised at the site of entry by epithelial and dendritic cells (DCs), both of which activate innate inflammatory circuits that can collectively induce Th2 immune responses. In an attempt to have a better understanding of the role of carbohydrates in the recognition and uptake of allergens by the innate immune system, we defined common glycosylation patterns in major allergens. This was done using labelled lectins and showed that allergens like Der p 1 (Dermatophagoides pteronyssinus group 1), Fel d 1 (Felis domisticus), Ara h 1 (Arachis hypogaea), Der p 2 (Dermatophagoides pteronyssinus group 2), Bla g 2 (Blattella germanica) and Can f 1 (Canis familiaris) are glycosylated and that the main dominant sugars on these allergens are 1ā€“2, 1ā€“3 and 1ā€“6 mannose. These observations are in line with recent reports implicating the mannose receptor (MR) in allergen recognition and uptake by DCs and suggesting a major link between glycosylation and allergen recognition. We then looked at TSLP (Thymic Stromal Lymphopoietin) cytokine secretion by lung epithelia upon encountering natural Der p 1 allergen. TSLP is suggested to drive DC maturation in support of allergic hypersensitivity reactions. Our data showed an increase in TSLP secretion by lung epithelia upon stimulation with natural Der p 1 which was carbohydrate dependent. The deglycosylated preparation of Der p 1 exhibited minimal uptake by DCs compared to the natural and hyperglycosylated recombinant counterparts, with the latter being taken up more readily than the other preparations. Collectively, our data indicate that carbohydrate moieties on allergens play a vital role in their recognition by innate immune cells, implicating them in downstream deleterious Th2 cell activation and IgE production

    Genome-wide patterns of promoter sharing and co-expression in bovine skeletal muscle

    Get PDF
    Background: Gene regulation by transcription factors (TF) is species, tissue and time specific. To better understand how the genetic code controls gene expression in bovine muscle we associated gene expression data from developing Longissimus thoracis et lumborum skeletal muscle with bovine promoter sequence information.Results: We created a highly conserved genome-wide promoter landscape comprising 87,408 interactions relating 333 TFs with their 9,242 predicted target genes (TGs). We discovered that the complete set of predicted TGs share an average of 2.75 predicted TF binding sites (TFBSs) and that the average co-expression between a TF and its predicted TGs is higher than the average co-expression between the same TF and all genes. Conversely, pairs of TFs sharing predicted TGs showed a co-expression correlation higher that pairs of TFs not sharing TGs. Finally, we exploited the co-occurrence of predicted TFBS in the context of muscle-derived functionally-coherent modules including cell cycle, mitochondria, immune system, fat metabolism, muscle/glycolysis, and ribosome. Our findings enabled us to reverse engineer a regulatory network of core processes, and correctly identified the involvement of E2F1, GATA2 and NFKB1 in the regulation of cell cycle, fat, and muscle/glycolysis, respectively.Conclusion: The pivotal implication of our research is two-fold: (1) there exists a robust genome-wide expression signal between TFs and their predicted TGs in cattle muscle consistent with the extent of promoter sharing; and (2) this signal can be exploited to recover the cellular mechanisms underpinning transcription regulation of muscle structure and development in bovine. Our study represents the first genome-wide report linking tissue specific co-expression to co-regulation in a non-model vertebrate

    Lipid Classes and Fatty Acid Patterns are Altered in the Brain of Ī³-Synuclein Null Mutant Mice

    Get PDF
    The well-documented link between Ī±-synuclein and the pathology of common human neurodegenerative diseases has increased attention to the synuclein protein family. The involvement of Ī±-synuclein in lipid metabolism in both normal and diseased nervous system has been shown by many research groups. However, the possible involvement of Ī³-synuclein, a closely-related member of the synuclein family, in these processes has hardly been addressed. In this study, the effect of Ī³-synuclein deficiency on the lipid composition and fatty acid patterns of individual lipids from two brain regions has been studied using a mouse model. The level of phosphatidylserine (PtdSer) was increased in the midbrain whereas no changes in the relative proportions of membrane polar lipids were observed in the cortex of Ī³-synuclein-deficient compared to wild-type (WT) mice. In addition, higher levels of docosahexaenoic acid were found in PtdSer and phosphatidylethanolamine (PtdEtn) from the cerebral cortex of Ī³-synuclein null mutant mice. These findings show that Ī³-synuclein deficiency leads to alterations in the lipid profile in brain tissues and suggest that this protein, like Ī±-synuclein, might affect neuronal function via modulation of lipid metabolism
    • ā€¦
    corecore