42 research outputs found

    Topology optimisation for compliant hip implant design and reduced strain shielding

    Get PDF
    Stiff total hip arthroplasty implants can lead to strain shielding, bone loss and complex revision surgery. The aim of this study was to develop topology optimisation techniques for more compliant hip implant design. The Solid Isotropic Material with Penalisation (SIMP) method was adapted, and two hip stems were designed and additive manufactured: (1) a stem based on a stochastic porous structure, and (2) a selectively hollowed approach. Finite element analyses and experimental measurements were conducted to measure stem stiffness and predict the reduction in stress shielding. The selectively hollowed implant increased peri-implanted femur surface strains by up to 25 percentage points compared to a solid implant without compromising predicted strength. Despite the stark differences in design, the experimentally measured stiffness results were near identical for the two optimised stems, with 39% and 40% reductions in the equivalent stiffness for the porous and selectively hollowed implants, respectively, compared to the solid implant. The selectively hollowed implant’s internal structure had a striking resemblance to the trabecular bone structures found in the femur, hinting at intrinsic congruency between nature’s design process and topology optimisation. The developed topology optimisation process enables compliant hip implant design for more natural load transfer, reduced strain shielding and improved implant survivorship

    Predicting hip-knee-ankle and femorotibial angles from knee radiographs with deep learning

    Get PDF
    BACKGROUND: Knee alignment affects the development and surgical treatment of knee osteoarthritis. Automating femorotibial angle (FTA) and hip-knee-ankle angle (HKA) measurement from radiographs could improve reliability and save time. Further, if HKA could be predicted from knee-only radiographs then radiation exposure could be reduced and the need for specialist equipment and personnel avoided. The aim of this research was to assess if deep learning methods could predict FTA and HKA angle from posteroanterior (PA) knee radiographs. METHODS: Convolutional neural networks with densely connected final layers were trained to analyse PA knee radiographs from the Osteoarthritis Initiative (OAI) database. The FTA dataset with 6149 radiographs and HKA dataset with 2351 radiographs were split into training, validation, and test datasets in a 70:15:15 ratio. Separate models were developed for the prediction of FTA and HKA and their accuracy was quantified using mean squared error as loss function. Heat maps were used to identify the anatomical features within each image that most contributed to the predicted angles. RESULTS: High accuracy was achieved for both FTA (mean absolute error 0.8°) and HKA (mean absolute error 1.7°). Heat maps for both models were concentrated on the knee anatomy and could prove a valuable tool for assessing prediction reliability in clinical application. CONCLUSION: Deep learning techniques enable fast, reliable and accurate predictions of both FTA and HKA from plain knee radiographs and could lead to cost savings for healthcare providers and reduced radiation exposure for patients

    Hip capsule biomechanics after arthroplasty - the effect of implant, approach and surgical repair

    Get PDF
    Aims The hip’s capsular ligaments passively restrain extreme range of movement (ROM) by wrapping around the native femoral head/neck. We determined the effect of hip resurfacing arthroplasty (HRA), dual-mobility total hip arthroplasty (DM-THA), conventional THA, and surgical approach on ligament function. Materials and Methods Eight paired cadaveric hip joints were skeletonized but retained the hip capsule. Capsular ROM restraint during controlled internal rotation (IR) and external rotation (ER) was measured before and after HRA, DM-THA, and conventional THA, with a posterior (right hips) and anterior capsulotomy (left hips). Results Hip resurfacing provided a near-native ROM with between 5° to 17° increase in IR/ER ROM compared with the native hip for the different positions tested, which was a 9% to 33% increase. DM-THA generated a 9° to 61° (18% to 121%) increase in ROM. Conventional THA generated a 52° to 100° (94% to 199%) increase in ROM. Thus, for conventional THA, the capsule function that exerts a limit on ROM is lost. It is restored to some extent by DM-THA, and almost fully restored by hip resurfacing. In positions of low flexion/extension, the posterior capsulotomy provided more normal function than the anterior, possibly because the capsule was shortened during posterior repair. However, in deep flexion positions, the anterior capsulotomy functioned better. Conclusion Native head-size and capsular repair preserves capsular function after arthroplasty. The anterior and posterior approach differentially affect postoperative biomechanical function of the capsular ligaments

    Bioreactor analyses of tissue ingrowth, ongrowth and remodelling around implants: an alternative to live animal testing

    Get PDF
    Introduction: Preclinical assessment of bone remodelling onto, into or around novel implant technologies is underpinned by a large live animal testing burden. The aim of this study was to explore whether a lab-based bioreactor model could provide similar insight. Method: Twelve ex vivo trabecular bone cylinders were extracted from porcine femora and were implanted with additively manufactured stochastic porous titanium implants. Half were cultured dynamically, in a bioreactor with continuous fluid flow and daily cyclic loading, and half in static well plates. Tissue ongrowth, ingrowth and remodelling around the implants were evaluated with imaging and mechanical testing. Results: For both culture conditions, scanning electron microscopy (SEM) revealed bone ongrowth; widefield, backscatter SEM, micro computed tomography scanning, and histology revealed mineralisation inside the implant pores; and histology revealed woven bone formation and bone resorption around the implant. The imaging evidence of this tissue ongrowth, ingrowth and remodelling around the implant was greater for the dynamically cultured samples, and the mechanical testing revealed that the dynamically cultured samples had approximately three times greater push-through fixation strength (p < 0.05). Discussion: Ex vivo bone models enable the analysis of tissue remodelling onto, into and around porous implants in the lab. While static culture conditions exhibited some characteristics of bony adaptation to implantation, simulating physiological conditions with a bioreactor led to an accelerated response

    Electromechanical and biological evaluations of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 as a lead-free piezoceramic for implantable bioelectronics

    Get PDF
    Smart implantable electronic medical devices are being developed to deliver healthcare that is more connected, personalised, and precise. Many of these implantables rely on piezoceramics for sensing, communication, energy autonomy, and biological stimulation, but the piezoceramics with the strongest piezoelectric coefficients are almost exclusively lead-based. In this article, we evaluate the electromechanical and biological characteristics of a lead-free alternative, 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 (BNT-6BT), manufactured via two synthesis routes: the conventional solid-state method (PIC700) and tape casting (TC-BNT-6BT). The BNT-6BT materials exhibited soft piezoelectric properties, with d33 piezoelectric coefficients that were inferior to commonly used PZT (PIC700: 116 pC/N; TC-BNT-6BT: 121 pC/N; PZT-5A: 400 pC/N). The material may be viable as a lead-free substitute for soft PZT where moderate performance losses up to 10 dB are tolerable, such as pressure sensing and pulse-echo measurement. No short-term harmful biological effects of BNT-6BT were detected and the material was conducive to the proliferation of MC3T3-E1 murine preosteoblasts. BNT-6BT could therefore be a viable material for electroactive implants and implantable electronics without the need for hermetic sealing

    The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres

    No full text
    In this in vitro study of the hip joint we examined which soft tissues act as primary and secondary passive rotational restraints when the hip joint is functionally loaded. A total of nine cadaveric left hips were mounted in a testing rig that allowed the application of forces, torques and rotations in all six degrees of freedom. The hip was rotated throughout a complete range of movement (ROM) and the contributions of the iliofemoral (medial and lateral arms), pubofemoral and ischiofemoral ligaments and the ligamentum teres to rotational restraint was determined by resecting a ligament and measuring the reduced torque required to achieve the same angular position as before resection. The contribution from the acetabular labrum was also measured. Each of the capsular ligaments acted as the primary hip rotation restraint somewhere within the complete ROM, and the ligamentum teres acted as a secondary restraint in high flexion, adduction and external rotation. The iliofemoral lateral arm and the ischiofemoral ligaments were primary restraints in two-thirds of the positions tested. Appreciation of the importance of these structures in preventing excessive hip rotation and subsequent impingement/instability may be relevant for surgeons undertaking both hip joint preserving surgery and hip arthroplasty

    Classification of combined partial knee arthroplasty

    No full text
    Aims There has been a recent resurgence in interest in combined partial knee arthroplasty (PKA) as an alternative to total knee arthroplasty (TKA). The varied terminology used to describe these procedures leads to confusion and ambiguity in communication between surgeons, allied health professionals, and patients. A standardized classification system is required for patient safety, accurate clinical record-keeping, clear communication, correct coding for appropriate remuneration, and joint registry data collection. Materials and Methods An advanced PubMed search was conducted, using medical subject headings (MeSH) to identify terms and abbreviations used to describe knee arthroplasty procedures. The search related to TKA, unicompartmental (UKA), patellofemoral (PFA), and combined PKA procedures. Surveys were conducted of orthopaedic surgeons, trainees, and biomechanical engineers, who were asked which of the descriptive terms and abbreviations identified from the literature search they found most intuitive and appropriate to describe each procedure. The results were used to determine a popular consensus. Results Survey participants preferred “bi-unicondylar arthroplasty” (Bi-UKA) to describe ipsilateral medial and lateral unicompartmental arthroplasty; “medial bi-compartmental arthroplasty” (BCA-M) to describe ipsilateral medial unicompartmental arthroplasty with patellofemoral arthroplasty; “lateral bi-compartmental arthroplasty” (BCA-L) to describe ipsilateral lateral unicompartmental arthroplasty with patellofemoral arthroplasty; and tri-compartmental arthroplasty (TCA) to describe ipsilateral patellofemoral and medial and lateral unicompartmental arthroplasties. “Combined partial knee arthroplasty” (CPKA) was the favoured umbrella term. Conclusion We recommend bi-unicondylar arthroplasty (Bi-UKA), medial bicompartmental arthroplasty (BCA-M), lateral bicompartmental arthroplasty (BCA-L), and tricompartmental arthroplasty (TCA) as the preferred terms to classify CPKA procedures

    The limit of tolerable micromotion for implant osseointegration: a systematic review

    No full text
    Much research effort is being invested into the development of porous biomaterials that enhance implant osseointegration. Large micromotions at the bone-implant interface impair this osseointegration process, resulting in fibrous capsule formation and implant loosening. This systematic review compiled all the in vivo evidence available to establish if there is a universal limit of tolerable micromotion for implant osseointegration. The protocol was registered with the International Prospective Register for Systematic Reviews (ID: CRD42020196686). Pubmed, Scopus and Web of Knowledge databases were searched for studies containing terms relating to micromotion and osseointegration. The mean value of micromotion for implants that osseointegrated was 32% of the mean value for those that did not (112 ± 176 µm versus 349 ± 231 µm, p < 0.001). However, there was a large overlap in the data ranges with no universal limit apparent. Rather, many factors were found to combine to affect the overall outcome including loading time, the type of implant and the material being used. The tables provided in this review summarise these factors and will aid investigators in identifying the most relevant micromotion values for their biomaterial and implant development research

    Simple smart implants: simultaneous monitoring of loosening and temperature in orthopaedics with an embedded ultrasound transducer

    No full text
    Implant failure can have devastating consequences on patient outcomes following joint replacement. Time to diagnosis affects subsequent treatment success, but current diagnostics do not give early warning and lack accuracy. This research proposes an embedded ultrasound system to monitor implant fixation and temperature – a potential indicator of infection. Requiring only two implanted components: a piezoelectric transducer and a coil, pulse-echo responses are elicited via a three-coil inductive link. This passive system avoids the need for batteries, energy harvesters, and microprocessors, resulting in minimal changes to existing implant architecture. Proof-of-concept was demonstrated in vitro for a titanium plate cemented into synthetic bone, using a small embedded coil with 10 mm diameter. Gross loosening – simulated by completely debonding the implant-cement interface – was detectable with 95% confidence at up to 12 mm implantation depth. Temperature was calibrated with root mean square error of 0.19 °C at 5 mm, with measurements accurate to ±1 °C with 95% confidence up to 6 mm implantation depth. These data demonstrate that with only a transducer and coil implanted, it is possible to measure fixation and temperature simultaneously. This simple smart implant approach minimises the need to modify well-established implant designs, and hence could enable mass-market adoption
    corecore