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Background: Knee alignment affects the development and surgical treatment of knee
osteoarthritis. Automating femorotibial angle (FTA) and hip-knee-ankle angle (HKA) mea-
surement from radiographs could improve reliability and save time. Further, if HKA could
be predicted from knee-only radiographs then radiation exposure could be reduced and the
need for specialist equipment and personnel avoided. The aim of this research was to
assess if deep learning methods could predict FTA and HKA angle from posteroanterior
(PA) knee radiographs.
Methods: Convolutional neural networks with densely connected final layers were trained
to analyse PA knee radiographs from the Osteoarthritis Initiative (OAI) database. The FTA
dataset with 6149 radiographs and HKA dataset with 2351 radiographs were split into
training, validation, and test datasets in a 70:15:15 ratio. Separate models were developed
for the prediction of FTA and HKA and their accuracy was quantified using mean squared
error as loss function. Heat maps were used to identify the anatomical features within each
image that most contributed to the predicted angles.
Results: High accuracy was achieved for both FTA (mean absolute error 0.8�) and HKA
(mean absolute error 1.7�). Heat maps for both models were concentrated on the knee
anatomy and could prove a valuable tool for assessing prediction reliability in clinical
application.
Conclusion: Deep learning techniques enable fast, reliable and accurate predictions of both
FTA and HKA from plain knee radiographs and could lead to cost savings for healthcare pro-
viders and reduced radiation exposure for patients.
� 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Knee osteoarthritis is a degenerative disease that affects 16% of the global population [1], causing joint pain, stiffness, and
reduced range of motion. Knee alignment is highly relevant to the development, progression and distribution of knee
osteoarthritis [2–4], and for knee arthroplasty procedures which provide a treatment option for end-stage disease [5–7].
Globally, more than 3.2 million knee arthroplasties are performed each year [8] and for each of these procedures, a knee
radiograph is taken to measure coronal knee alignment and plan the procedure.
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There are two common measurements of knee angle taken from radiographs: hip-knee-ankle (HKA) and femorotibial
angle (FTA). HKA is defined as the angle between the mechanical axes of the femur and the tibia [9]; its measurement
requires a full-limb radiograph to identify the hip, knee and ankle joint centres. HKA is the gold standard measure of coronal
plane knee alignment as it relates to the load distribution within the knee joint. However, its measurement requires more
expensive equipment and higher radiation exposure (15–50 millirems) for full-limb radiographs versus localised knee radio-
graphs (3 millirems) [10]. FTA – the angle between the femoral and tibial anatomical axes [9] – is moderately correlated to
HKA [10] and can be taken from a knee-only posterior-anterior (PA) radiograph and is therefore often used as a surrogate
measure. Whilst HKA is the better measure, many centres choose to use only FTA for preoperative planning or postoperative
follow-up as it is cheaper and more convenient. Enabling HKA measurement from knee-only radiographs would thus be of
great clinical use [11]: producing the gold-standard measure with reduced cost and radiation exposure, providing additional
information for knee arthroplasty planning and follow-up for surgeons who do not routinely have access to full-limb
radiographs.

State-of-the-art for prediction of HKA from knee-only radiographs is based on algorithmic approaches that relate to a
clinical understanding of knee anatomy [10–12]. An alternative approach could be to leverage recent developments in con-
volutional neural networks (CNNs) and growth in computing power [13]. Deep learning methods have shown early promise
in measuring HKA on full-limb radiographs [14–16] and in analysing PA knee radiographs for other applications [17–19]. The
scope for impact is exciting, for example recent research has demonstrated that neural networks are able to identify arthro-
plasty implants from plain radiographs with 100% accuracy [20] and grade knee osteoarthritis severity as accurately as a
fellowship-trained arthroplasty surgeon [21]. Therefore, the aim of this study was to investigate whether CNNs could be
applied to automatically measure FTA and HKA from knee-only PA radiographs.
2. Materials and methods

Two deep learning models to measure knee alignment from knee-only posterior-anterior radiographs were developed:
the first measured FTA and the second predicted HKA. Clinically reported measurements from the Osteoarthritis Initiative
(OAI) were used as ground truth data for training and evaluation.
2.1. Data

Bilateral knee radiographs with the X-ray beam passing posterior to anterior (PA) were sourced from the baseline dataset
of the OAI: a mixed-sex, multi-centre, ten-year observational study. The dataset contained 4,795 bilateral knee radiographs
and 2,723 full-limb radiographs. FTA measurements – calculated from knee radiographs using a landmark-based method
[12] – were supplied as part of the dataset but were not available for radiographs with <10 cm of tibial shaft visible. HKA
was also included in the dataset, having been measured from full-limb radiographs using OAISYS Horizon Surveyor software
[22–24]. All images that had a corresponding knee alignment measurement were used, including those for patients with
knee deformity, a history of prior surgery (trauma, replacement, etc.) on or around the knee joint, and those where clinicians
might perceive the image quality to be low. The bilateral radiographs were split into unilateral images, and right knees were
mirrored with no further pre-processing or annotation. The FTA and HKA datasets were divided in a ratio of 70:15:15 into
training, validation, and test sets. Ultimately, 6,149 unilateral radiographs were used to train the FTA prediction models and
2,351 were used for HKA training. There was no patient crossover between datasets.
2.2. Architecture

Separate convolutional models of identical architecture (Figure 1) were developed to predict FTA and HKA from knee
radiographs. Two commonly used CNNs were investigated as the backbone of the model: DenseNet-121 [25] and
Inception-ResNet V2 [26]. Outputs of the base CNN were flattened using global average pooling before being fed through
two densely connected layers (1024 and 512 neurons with ReLU activation functions) and into the final regression layer.
2.3. Training

The Adam optimizer [27] was used to train the models with mean squared error (MSE) between the predicted and OAI-
reported knee angle as a loss function. Ground truth data for training the FTA model were measured from the same knee-
only image using a semi-automatic landmark-based method [12]. Ground truth data for HKA were measured on separate
full-limb radiographs using OAISYS Horizon Surveyor Software. Networks were initialised with base CNN weights pretrained
on the ImageNet classification dataset [28] and randomly initialised final layer weights. To encourage the model to learn
from the knee anatomy rather than the protocols of image acquisition, images were randomly rotated (±10�) and cropped
(85–100%) during training. Models were trained on NVIDIA Quadro RTX 6000 GPUs in batch sizes of 64 for 100 epochs.
The model was evaluated on the validation set after each epoch, with the best performing model selected for testing.
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Figure 1. The architecture for predicting alignment angles (HKA/FTA) from knee radiographs consisted of a base convolutional neural network (DenseNet/
Inception-ResNet-V2) and two fully connected final layers (1024 and 512 neurons).
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2.4. Evaluation

The accuracy of the FTA and HKA models were evaluated with respect to the clinically reported OAI measurements using
mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE). Additionally, the percentage of
predictions within 3� and 1� of the OAI-reported angles was evaluated as a clinically relevant performance metric. Intraclass
correlation coefficients (ICC) – two-way mixed, single measures for absolute agreement – between the predicted angles for
each model and the OAI-reported angles were computed in SPSS Statistics software as a measure of reliability. Graphically,
accuracy was evaluated with density plots of the predicted values of the testing dataset against the reported values. Bland-
Altman plots were also plotted for direct comparison to the state-of-art semi-automatic methods of calculating FTA and HKA
from knee radiographs [12] with 95% limits of agreement (95% LoA).

2.5. Attention analysis

Attention heat maps were used to identify the focus of the models during inference (Figure 2). Blocks of the input radio-
graphs were systematically occluded [29] with a black square and passed through the model, whereupon a new prediction of
knee alignment was generated. The predicted alignment for each occluded image, yij, was compared to the original predic-

tion on the unoccluded image, y
�
, to generate a sensitivity matrix: �ij ¼ yij � y

��
�
�

�
�
�, which was then normalised (min–max) for

each image. Large deviations in the predicted alignment indicate that the occluded region was significant to the model’s pre-
diction, thereby allowing its focus to be determined when superposed onto the original radiograph.

3. Results

For both FTA and HKA, the best performing models were built upon the DenseNet architecture (Table 1, Figure 3), with
FTA being better predicted than HKA – as would be expected for local PA radiographs. The best performing computer-
assisted approach [12] identified in literature, which was used to generate the ground-truth FTA measures in this study,
reported a 95% limit of agreement of 1.1� in an inter-reader variability study. The 95% limit of agreement between our fully
automatic FTA predictions and those of the reference method was worse (1.9�) but comfortably within the 3� threshold for
clinical use (Table 1, Figure 4).

HKA predictions were correlated (ICC: 0.80, Figure 3) to the clinically reported HKA measures taken from full-limb radio-
graphs with 83.9% of predictions within a 3� difference. The 95% limit of agreement between the predictions and the refer-
ence measures was 4.3�, which outperforms the state-of-the-art semi-automatic method for HKA prediction [11] by 0.1�
(Figure 4).

Heat maps representative of excellent FTA prediction focused on the femoral and tibial condyles with moderate attention
on the tibial spine and a distinguishable gap between the femoral and tibial foci (Figure 5), which corresponds to the
anatomical landmarks used to estimate FTA in the reference method [12]. By contrast, heat maps with large absolute pre-
diction errors (>3�) only focused on the medial side of the tibia. Attention during highly accurate HKA predictions also
focused on the knee’s bony anatomy, albeit more broadly, with the lateral focus being closer towards the trochlear groove
than it was during FTA predictions. Conversely in poor HKA predictions, the model did not establish distinct bilateral
femoral/tibial foci and focused on soft tissue features around the knee. Interestingly, the model proved capable of predicting
alignment for both native knees and knees with a history of prior surgery (Figure 5).

4. Discussion

This is the first study to our knowledge to present a fully automatic method for measuring coronal knee alignment using
knee-only PA radiographs, demonstrating high accuracy for FTA (MAE: 0.8�) and outperforming state-of-the-art [11] for HKA
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Figure 2. The attention of the model during angle prediction was determined by systematically occluding regions of the original image and recording
sensitivity.

Table 1
Summary of performance for trained neural networks on testing dataset with comparison to the state-of-the-art computer-assisted methods.

Angle Base Models MSE MAE RMSE <3� Difference <1� Difference ICC 95% Limit of Agreement
(�2) (�) (�) (%) (%) (-) (�)

FTA Inception-ResNet 1.32 0.89 1.15 98.5 66.1 0.90 2.2
DenseNet 1.19 0.82 1.09 98.7 69.5 0.91 1.9
Iranpour-Boroujeni et al. (2014) - - 0.37 100.0 - 0.98 1.1

HKA Inception-ResNet 6.87 2.02 2.62 77.7 30.5 0.70 5.1
DenseNet 5.06 1.73 2.25 83.9 37.9 0.80 4.3
Gielis et al. (2020) - 1.8 - - - 0.90 4.4

MSE: Mean Squared Error; MAE: Mean Absolute Error; RMSE: Root Mean Square Error; ICC: Intraclass Correlation Coefficient.

J. Wang, Thomas A.G. Hall, O. Musbahi et al. The Knee 42 (2023) 281–288
(MAE: 1.7�). This finding is particularly impressive considering no restrictions were imposed on the training dataset and no
anatomical annotation was required. Using deep learning, the model was able to predict alignment for knees in various con-
ditions: native, osteotomised, partially and totally replaced (Figure 5). FTA prediction was more accurate than HKA predic-
tion: an intuitive finding given that all the information required to calculate FTA is contained within the knee-only
radiograph. Further, the state-of-the-art method used to provide reference measures for FTA [12] avoids any scan-rescan
reproducibility errors. The 95% limit of agreement for our method was higher than its inter-reader variability (1.9� vs.
1.1�), which is to be expected as the model cannot outperform its input data.

Historically, an accuracy of 3� in HKA measurement has been regarded as sufficient for clinical use in orthopaedic surgery
[30], though recent advances in computer-assisted and robotic-assisted surgery have prompted a drive for more accurate
surgery. Contemporary robotic systems have been reported to achieve alignments of 89–100% within 3� of the surgical plan
[31–35], 73% within 2� [31], and 75–78% within 1� [33,35]. On the testing set, 83.9% of automatic HKA predictions were
within 3� of the reference measurement and the mean absolute difference was 1.7�. The reference measures were acquired
on separate full-limb radiographs and were therefore susceptible to two sources of error: intra/inter-reader variability and
scan-rescan reproducibility, which limit the achievable accuracy. In an analysis of inter-reader variability, the reference
method exhibited a mean difference of 0.1� with a 95% limit of agreement of ±1.2� [24]. For reference, a deep learning model
for HKA prediction on OAI full-limb radiographs, wherein the hip-knee-ankle centres are visible, achieved mean difference
and 95% limit of agreement results of 0.09� ± 0.73� [14]. Data on the scan-rescan reproducibility of HKA measurement is
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Figure 3. Results on the test dataset for the DenseNet architecture demonstrate a strong correlation between predicted and OAI-reported values for (a) FTA
(ICC: 0.91) and (b) HKA (ICC: 0.80), where the intensity of red shading indicates the density of points.

Figure 4. Bland-Altman plots of neural network prediction reliability versus OAI-reported measures for the DenseNet architecture: (a) FTA prediction with
comparison to state-of-the-art manual measurement (�1.1� in Iranpour-Boroujeni et al., 2014) and (b) HKA with comparison to state-of-the-art semi-
automatic prediction (�4.4� in Gielis et al., 2020). The intensity of red shading indicates point density.
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scarce, though a small eight-patient study observed scan-to-scan differences of 0-2� (mean: 1.3�) in HKAmeasures [30]. Such
magnitudes of error are similar to the mean absolute difference for our model (1.7�).

Whilst HKA measurement from full-limb radiographs remains the gold-standard measurement for knee alignment accu-
racy, this advance in automatic HKA prediction from knee radiographs is clinically important for centres that do not have the
expensive specialist equipment to perform long-leg radiographs, such as non-specialist centres and those in developing
nations. Compared to measurement on full-limb radiographs, HKA predictions from knee-only radiographs reduces costs
for the healthcare provides, time for clinicians, and radiation exposure for patients. This fully automatic method is faster than
the state-of-the-art semi-automatic method for HKA prediction [11], which requires clinicians to check and manually correct
annotated anatomical landmarks (�1 minute processing time) before calculating the alignment, and required exclusion of
patients with prior surgery or deformity. In practice, clinicians must be able to trust the predicted alignments; the concomi-
tant heat maps could therefore be a promising tool to explain and distinguish between good and bad predictions.
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Figure 5. Six representative heatmaps for FTA (left) and HKA (right) models using the DenseNet architecture annotated with difference in prediction versus
the reference measure. Top row) native knee predictions with near-perfect agreement (<0.01�) to the reference measure. Middle row) native knee
predictions with low agreement (>3�). Bottom row) predictions for knees with a history of prior surgery exhibiting high agreement (<1�).
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These models provide a strong foundation for predicting coronal knee alignment from knee radiographs using deep learn-
ing, with potential improvements to be found by fine-tuning the neural network architecture. Further, as all data in this
study came from a single source (OAI), additional datasets with more diverse populations and measurement protocols could
improve training and provide external validation. Consensus voting, wherein several measures on the same image are aggre-
gated for a more reliable ground truth, could also be used to improve predictions by reducing any error owing to intra/inter-
reader variability in the reference measures.

5. Conclusion

Deep learning enables fully automated HKA prediction from knee radiographs with accuracy greater than a state-of-the-
art semi-automatic approach. The approach enabled image analysis even for patients with knee deformity or prior knee sur-
gery. With attention heat maps to gauge prediction accuracy, this advance could reduce the need for full-limb radiographs
when planning orthopaedic procedures, democratising access to this important measurement, reducing cost for healthcare
providers and reducing radiation exposure for patients.
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