35,701 research outputs found
Styles of thinking as a basis of differentiated instruction
We consider how to differentiate instruction using a theory of thinking styles as a basis for differentiation. The article opens with a consideration of why styles are important. Then it considers some general characteristics of styles, presents the theory of mental self-government, considers issues of measurement, and presents data supporting the theory. Next, it discusses application of the theory in the classroom. Finally, it draws conclusions.published_or_final_versio
Model averaging based on Kullback-Leibler distance
© 2015, Institute of Statistical Science. All rights reserved. This paper proposes a model averaging method based on Kullback-Leibler distance under a homoscedastic normal error term. The resulting model average estimator is proved to be asymptotically optimal. When combining least squares estimators, the model average estimator is shown to have the same large sample properties as the Mallows model average (MMA) estimator developed by Hansen (2007). We show via simulations that, in terms of mean squared prediction error and mean squared parameter estimation error, the proposed model average estimator is more efficient than the MMA estimator and the estimator based on model selection using the corrected Akaike information criterion in small sample situations. A modified version of the new model average estimator is further suggested for the case of heteroscedastic random errors. The method is applied to a data set from the Hong Kong real estate market
Abnormally high content of free glucosamine residues identified in a preparation of commercially available porcine intestinal heparan sulfate
Heparan sulfate (HS) polysaccharides are ubiquitous in animal tissues as components of proteoglycans, and they participate in many important biological processes. HS carbohydrate chains are complex and can contain rare structural components such as N-unsubstituted glucosamine (GlcN). Commercially available HS preparations have been invaluable in many types of research activities. In the course of preparing microarrays to include probes derived from HS oligosaccharides, we found an unusually high content of GlcN residue in a recently purchased batch of porcine intestinal mucosal HS. Composition and sequence analysis by mass spectrometry of the oligosaccharides obtained after heparin lyase III digestion of the polysaccharide indicated two and three GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. (1)H NMR of the intact polysaccharide showed that this unusual batch differed strikingly from other HS preparations obtained from bovine kidney and porcine intestine. The very high content of GlcN (30%) and low content of GlcNAc (4.2%) determined by disaccharide composition analysis indicated that N-deacetylation and/or N-desulfation may have taken place. HS is widely used by the scientific community to investigate HS structures and activities. Great care has to be taken in drawing conclusions from investigations of structural features of HS and specificities of HS interaction with proteins when commercial HS is used without further analysis. Pending the availability of a validated commercial HS reference preparation, our data may be useful to members of the scientific community who have used the present preparation in their studies
Direct ink writing of vancomycin-loaded polycaprolactone/ polyethylene oxide/ hydroxyapatite 3D scaffolds
Novel inks were formulated by dissolving polycaprolactone (PCL), a hydrophobic polymer, in organic solvent systems; polyethylene oxide (PEO) was incorporated to extend the range of hydrophilicity of the system. Hydroxyapatite (HAp) with a weight ratio of 55–85% was added to the polymer-based solution to mimic the material composition of natural bone tissue. The direct ink writing (DIW) technique was applied to extrude the formulated inks to fabricate the predesigned tissue scaffold structures; the influence of HAp concentration was investigated. The results indicate that in comparison to other inks containing HAp (55%, 75%, and 85%w/w), the ink containing 65% w/w HAp had faster ink recovery behavior; the fabricated scaffold had a rougher surface as well as better mechanical properties and wettability. It is noted that the 65% w/w HAp concentration is similar to the inorganic composition of natural bone tissue. The elastic modulus values of PCL/PEO/HAp scaffolds were in the range of 4–12 MPa; the values were dependent on the HAp concentration. Furthermore, vancomycin as a model drug was successfully encapsulated in the PCL/PEO/HAp composite scaffold for drug release applications. This paper presents novel drug-loaded PCL/PEO/HAp inks for 3D scaffold fabrication using the DIW printing technique for potential bone scaffold applications
Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects
Four experiments studied the interfering effects of a to-be-ignored ‘stimulus suffix’ on cued recall of feature bindings for a series of objects. When each object was given equal weight (Experiment 1) or rewards favored recent items (Experiments 2 and 4), a recency effect emerged that was selectively reduced by a suffix. The reduction was greater for a ‘plausible’ suffix with features drawn from the same set as the memory items, in which case a feature of the suffix was frequently recalled as an intrusion error. Changing pay-offs to reward recall of early items led to a primacy effect alongside recency (Experiments 3 and 4). Primacy, like recency, was reduced by a suffix and the reduction was greater for a suffix with plausible features, such features often being recalled as intrusion errors. Experiment 4 revealed a trade-off such that increased primacy came at the cost of a reduction in recency. These observations show that priority instructions and recency combine to determine a limited number of items that are the most accessible for immediate recall and yet at the same time the most vulnerable to interference. We interpret this outcome in terms of a labile, limited capacity ‘privileged state’ controlled by both central executive processes and perceptual attention. We suggest further that this privileged state can be usefully interpreted as the focus of attention in the episodic buffer
Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator
The paper reports an experimental investigation of a newly proposed solar collector that integrates a closed-end pulsating heat pipe (PHP) and a compound parabolic concentrator (CPC). The PHP is used as an absorber due to its simple structure and high heat transfer capacity. The CPC has a concentration ratio of 3.4 and can be readily manufactured by three-dimensional printing. The CPC can significantly increase the incident solar irradiation intensity to the PHP absorber and also reduce the heat loss due to the decrease in the area of the hot surface. A prototype of the solar collector has been built, consisting of a PHP absorber bent by 4 mm diameter copper tube, CPC arrayed by 10 × 2 CPC units with the collection area of 300 × 427.6 mm2, a hot water tank and a glass cover. HFE7100 was utilized as the working fluid at a filling ratio of 40%. The operating characteristics and thermal efficiency of the solar collector were experimentally studied. The steady and periodic temperature fluctuations of the evaporation and condensation sections of the PHP absorber indicate that the absorber works well with a thermal resistance of about 0.26 °C/W. It is also found that, as the main factor to the the thermal performance of the collector, thermal resistance of the PHP absorber decreases with increasing evaporation temperature. The collector apparently shows start-up, operational and shutdown stages at the starting and ending temperatures of 75 °C. When the direct normal irradiance is 800 W/m2, the instantaneous thermal efficiency of the solar collector can reach up to 50%.The work was financially supported by the National Natural Science Foundation of China (51506004), Beijing Natural Science Foundation (3162009), Scientific Research Project of Beijing Educational Committee (KM201410016001) and Research Fund of Beijing University of Civil Engineering and Architecture
Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions
This paper describes Tacotron 2, a neural network architecture for speech
synthesis directly from text. The system is composed of a recurrent
sequence-to-sequence feature prediction network that maps character embeddings
to mel-scale spectrograms, followed by a modified WaveNet model acting as a
vocoder to synthesize timedomain waveforms from those spectrograms. Our model
achieves a mean opinion score (MOS) of comparable to a MOS of for
professionally recorded speech. To validate our design choices, we present
ablation studies of key components of our system and evaluate the impact of
using mel spectrograms as the input to WaveNet instead of linguistic, duration,
and features. We further demonstrate that using a compact acoustic
intermediate representation enables significant simplification of the WaveNet
architecture.Comment: Accepted to ICASSP 201
PDMS composites with photostable NIR dyes for multi-modal ultrasound imaging
All-optical ultrasound (OpUS) imaging has emerged as an imaging paradigm well-suited for minimally invasive surgical procedures. With this modality, ultrasound is generated when pulsed or modulated light is absorbed within a coating material. By engineering wavelength-selective coatings, complementary imaging and therapeutic modalities can be integrated with OpUS. Here, we present a wavelength-selective composite material comprising a near-infrared absorbing dye and polydimethylsiloxane. The optical absorption for this material peaked in the vicinity of 1064 nm, with up to 91% of incident light being absorbed, whilst maintaining lower optical absorption at other wavelengths. This material was used to generate ultrasound, demonstrating ultrasound pressures >1 MPa, consistent with those used for imaging applications. Crucially, long exposure photostability and device performance were found to be stable over a one hour period (peak pressure variation <10%), longer than required for standard clinical imaging applications
Long-term Variability Properties and Periodicity Analysis for Blazars
In this paper, the compiled long-term optical and infrared measurements of
some blazars are used to analyze the variation properties and the optical data
are used to search for periodicity evidence in the lightcurve by means of the
Jurkevich technique and the discrete correlation function (DCF) method.
Following periods are found: 4.52-year for 3C 66A; 1.56 and 2.95 years for AO
0235+164;
14.4, 18.6 years for PKS 0735+178; 17.85 and 24.7 years for PKS 0754+100;
5.53 and 11.75 for OJ 287. 4.45, and 6.89 years for PKS 1215; 9 and 14.84 years
for PKS 1219+285;
2.0, 13.5 and 22.5 for 3C273; 7.1 year for 3C279;
6.07 for PKS 1308+326; 3.0 and 16.5 years for PKS 1418+546;
2.0 and 9.35 years for PKS 1514-241; 18.18 for PKS 1807+698;
4.16 and 7.0 for 2155-304; 14 and 20 years for BL Lacertae. Some explanations
have been discussed.Comment: 10 pages, 2 table, no figure, a proceeding paper for Pacific Rim
Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin
- …