83 research outputs found

    Does advancing male age influence the expression levels and localisation patterns of phospholipase C zeta (PLCζ) in human sperm?

    Get PDF
    Socio-economic factors have led to an increasing trend for couples to delay parenthood. However, advancing age exerts detrimental effects upon gametes which can have serious consequences upon embryo viability. While such effects are well documented for the oocyte, relatively little is known with regard to the sperm. One fundamental role of sperm is to activate the oocyte at fertilisation, a process initiated by phospholipase C zeta (PLCζ), a sperm-specific protein. While PLCζ deficiency can lead to oocyte activation deficiency and infertility, it is currently unknown whether the expression or function of PLCζ is compromised by advancing male age. Here, we evaluate sperm motility and the proportion of sperm expressing PLCζ in 71 males (22–54 years; 44 fertile controls and 27 infertile patients), along with total levels and localisation patterns of PLCζ within the sperm head. Three different statistical approaches were deployed with male age considered both as a categorical and a continuous factor. While progressive motility was negatively correlated with male age, all three statistical models concurred that no PLCζ–related parameter was associated with male age, suggesting that advancing male age is unlikely to cause problems in terms of the sperm’s fundamental ability to activate an oocyt

    Management of rheumatoid arthritis: consensus recommendations from the Hong Kong Society of Rheumatology

    Get PDF
    Given the recent availability of novel biologic agents for the treatment of rheumatoid arthritis (RA), the Hong Kong Society of Rheumatology has developed consensus recommendations on the management of RA, which aim at providing guidance to local physicians on appropriate, literature-based management of this condition, specifically on the indications and monitoring of the biologic disease-modifying anti-rheumatic drugs (DMARDs). The recommendations were developed using the European League Against Rheumatism (EULAR) recommendations for the management of early arthritis as a guide, along with local expert opinion. As significant joint damage occurs early in the course of RA, initiating therapy early is key to minimizing further damage and disability. Patients with serious disease or poor prognosis should receive early, aggressive therapy. Because of its good efficacy and safety profile, methotrexate is considered the standard first-line DMARD for most treatment-naïve RA patients. Patients with a suboptimal response to methotrexate monotherapy should receive step-up (combination) therapy with either the synthetic or biologic DMARDs. In recent years, combinations of methotrexate with tocilizumab, abatacept, or rituximab have emerged as effective therapies in patients who are unresponsive to traditional DMARDs or the anti-tumor necrosis factor (TNF)-α agents. As biologic agents can increase the risk of infections such as tuberculosis and reactivation of viral hepatitis, screening for the presence of latent tuberculosis and chronic viral hepatitis carrier state is recommended before initiating therapy

    The ubiquitin proteasome system in neuropathology

    Get PDF
    The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed
    corecore