461 research outputs found
Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation
Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning
A Multiwell Platform for Studying Stiffness-Dependent Cell Biology
Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes
The Effectiveness of Mindfulness Training for Children with ADHD and Mindful Parenting for their Parents
This study evaluated the effectiveness of an 8-week mindfulness training for children aged 8–12 with ADHD and parallel mindful parenting training for their parents. Parents (N = 22) completed questionnaires on their child’s ADHD and ODD symptoms, their own ADHD symptoms, parenting stress, parental overreactivity, permissiveness and mindful awareness before, immediately after the 8-week training and at 8-week follow-up. Teachers reported on ADHD and ODD behavior of the child. A within-group waitlist was used to control for the effects of time and repeated measurement. Training was delivered in group format. There were no significant changes between wait-list and pre-test, except on the increase of teacher-rated ODD behavior. There was a significant reduction of parent-rated ADHD behavior of themselves and their child from pre-to posttest and from pre- to follow-up test. Further, there was a significant increase of mindful awareness from pre-to posttest and a significant reduction of parental stress and overreactivity from pre-to follow-up test. Teacher-ratings showed non-significant effects. Our study shows preliminary evidence for the effectiveness of mindfulness for children with ADHD and their parents, as rated by parents. However, in the absence of substantial effects on teacher-ratings, we cannot ascertain effects are due to specific treatment procedures
De Novo Growth Zone Formation from Fission Yeast Spheroplasts
Eukaryotic cells often form polarized growth zones in response to internal or external cues. To understand the establishment of growth zones with specific dimensions we used fission yeast, which grows as a rod-shaped cell of near-constant width from growth zones located at the cell tips. Removing the cell wall creates a round spheroplast with a disorganized cytoskeleton and depolarized growth proteins. As spheroplasts recover, new growth zones form that resemble normal growing cell tips in shape and width, and polarized growth resumes. Regulators of the GTPase Cdc42, which control width in exponentially growing cells, also control spheroplast growth zone width. During recovery the Cdc42 scaffold Scd2 forms a polarized patch in the rounded spheroplast, demonstrating that a growth zone protein can organize independent of cell shape. Rga4, a Cdc42 GTPase activating protein (GAP) that is excluded from cell tips, is initially distributed throughout the spheroplast membrane, but is excluded from the growth zone after a stable patch of Scd2 forms. These results provide evidence that growth zones with normal width and protein localization can form de novo through sequential organization of cellular domains, and that the size of these growth zones is genetically controlled, independent of preexisting cell shape
Differential Matrix Rigidity Response in Breast Cancer Cell Lines Correlates with the Tissue Tropism
Metastasis to a variety of distant organs, such as lung, brain, bone, and liver, is a leading cause of mortality in the breast cancer patients. The tissue tropism of breast cancer metastasis has been recognized and studied extensively, but the cellular processes underlying this phenomenon, remain elusive. Modern technologies have enabled the discovery of a number of the genetic factors determining tissue tropism of malignant cells. However, the effect of these genetic differences on the cell motility and invasiveness is poorly understood. Here, we report that cellular responses to the mechanical rigidity of the extracellular matrix correlate with the rigidity of the target tissue. We tested a series of single cell populations isolated from MDA-MB-231 breast cancer cell line in a variety of assays where the extracellular matrix rigidity was varied to mimic the environment that these cells might encounter in vivo. There was increased proliferation and migration through the matrices of rigidities corresponding to the native rigidities of the organs where metastasis was observed. We were able to abolish the differential matrix rigidity response by knocking down Fyn kinase, which was previously identified as a critical component of the FN rigidity response pathway in healthy cells. This result suggests possible molecular mechanisms of the rigidity response in the malignant cells, indicating potential candidates for therapeutic interventions
Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment.
Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.This work was supported by the European Research Council to ADRH (grant agreement 282051). We wish to thank all CMBL members for help with this project
Stress Generation and Filament Turnover during Actin Ring Constriction
We present a physical analysis of the dynamics and mechanics of contractile actin rings. In particular, we analyze the dynamics of ring contraction during cytokinesis in the Caenorhabditis elegans embryo. We present a general analysis of force balances and material exchange and estimate the relevant parameter values. We show that on a microscopic level contractile stresses can result from both the action of motor proteins, which cross-link filaments, and from the polymerization and depolymerization of filaments in the presence of end-tracking cross-linkers
High Refractive Index Silicone Gels for Simultaneous Total Internal Reflection Fluorescence and Traction Force Microscopy of Adherent Cells
Substrate rigidity profoundly impacts cellular behaviors such as migration, gene expression, and cell fate. Total Internal Reflection Fluorescence (TIRF) microscopy enables selective visualization of the dynamics of substrate adhesions, vesicle trafficking, and biochemical signaling at the cell-substrate interface. Here we apply high-refractive-index silicone gels to perform TIRF microscopy on substrates with a wide range of physiological elastic moduli and simultaneously measure traction forces exerted by cells on the substrate
- …