88 research outputs found

    Dephasing of a Qubit due to Quantum and Classical Noise

    Full text link
    The qubit (or a system of two quantum dots) has become a standard paradigm for studying quantum information processes. Our focus is Decoherence due to interaction of the qubit with its environment, leading to noise. We consider quantum noise generated by a dissipative quantum bath. A detailed comparative study with the results for a classical noise source such as generated by a telegraph process, enables us to set limits on the applicability of this process vis a vis its quantum counterpart, as well as lend handle on the parameters that can be tuned for analyzing decoherence. Both Ohmic and non-Ohmic dissipations are treated and appropriate limits are analyzed for facilitating comparison with the telegraph process.Comment: 12 pages, 8 figure

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    GoLoco motif proteins binding to Gαi1: insights from molecular simulations

    Get PDF
    Molecular dynamics simulations, computational alanine scanning and sequence analysis were used to investigate the structural properties of the Gαi1/GoLoco peptide complex. Using these methodologies, binding of the GoLoco motif peptide to the Gαi1 subunit was found to restrict the relative movement of the helical and catalytic domains in the Gαi1 subunit, which is in agreement with a proposed mechanism of GDP dissociation inhibition by GoLoco motif proteins. In addition, the results provide further insights into the role of the “Switch IV” region located within the helical domain of Gα, the conformation of which might be important for interactions with various Gα partners

    Hemodialysis vascular access options in pediatrics: considerations for patients and practitioners

    Get PDF
    Recent data indicate that the incidence of end-stage renal disease (ESRD) in pediatric patients (age 0–19 years) has increased over the past two decades. Similarly, the prevalence of ESRD has increased threefold over the same period. Hemodialysis (HD) continues to be the most frequently utilized modality for renal replacement therapy in incident pediatric ESRD patients. The number of children on HD exceeded the sum total of those on peritoneal dialysis and those undergoing pre-emptive renal transplantation. Choosing the best vascular access option for pediatric HD patients remains challenging. Despite a national initiative for fistula first in the adult hemodialysis population, the pediatric nephrology community in the United States of America utilizes central venous catheters as the primary dialysis access for most patients. Vascular access management requires proper advance planning to assure that the best permanent access is placed, seamless communication involving a multidisciplinary team of nephrologists, nurses, surgeons, and interventional radiologists, and ongoing monitoring to ensure a long life of use. It is imperative that practitioners have a long-term vision to decrease morbidity in this unique patient population. This article reviews the various types of pediatric vascular accesses used worldwide and the benefits and disadvantages of these various forms of access

    Is caching the key to exclusion in corvids? The case of carrion crows (Corvus corone corone)

    Get PDF
    Recently, two corvid species, food-caching ravens and non-caching jackdaws, have been tested in an exclusion performance (EP) task. While the ravens chose by exclusion, the jackdaws did not. Thus, foraging behaviour may affect EP abilities. To investigate this possibility, another food-caching corvid species, the carrion crow (Corvus corone corone), was tested in the same exclusion task. We hid food under one of two cups and subsequently lifted either both cups, or the baited or the un-baited cup. The crows were significantly above chance when both cups were lifted or when only the baited cup was lifted. When the empty cup was lifted, we found considerable inter-individual variation, with some birds having a significant preference for the un-baited but manipulated cup. In a follow-up task, we always provided the birds with the full information about the food location, but manipulated in which order they saw the hiding or the removal of food. Interestingly, they strongly preferred the cup which was manipulated last, even if it did not contain any food. Therefore, we repeated the first experiment but controlled for the movement of the cups. In this case, more crows found the food reliably in the un-baited condition. We conclude that carrion crows are able to choose by exclusion, but local enhancement has a strong influence on their performance and may overshadow potential inferential abilities. However, these findings support the hypothesis that caching might be a key to exclusion in corvids

    What You See Is What You Get? Exclusion Performances in Ravens and Keas

    Get PDF
    BACKGROUND:Among birds, corvids and parrots are prime candidates for advanced cognitive abilities. Still, hardly anything is known about cognitive similarities and dissimilarities between them. Recently, exclusion has gained increasing interest in comparative cognition. To select the correct option in an exclusion task, one option has to be rejected (or excluded) and the correct option may be inferred, which raises the possibility that causal understanding is involved. However, little is yet known about its evolutionary history, as only few species, and mainly mammals, have been studied. METHODOLOGY/PRINCIPAL FINDINGS:We tested ravens and keas in a choice task requiring the search for food in two differently shaped tubes. We provided the birds with partial information about the content of one of the two tubes and asked whether they could use this information to infer the location of the hidden food and adjust their searching behaviour accordingly. Additionally, this setup allowed us to investigate whether the birds would appreciate the impact of the shape of the tubes on the visibility of food. The keas chose the baited tube more often than the ravens. However, the ravens applied the more efficient strategy, choosing by exclusion more frequently than the keas. An additional experiment confirmed this, indicating that ravens and keas either differ in their cognitive skills or that they apply them differently. CONCLUSION:To our knowledge, this is the first study to demonstrate that corvids and parrots may perform differently in cognitive tasks, highlighting the potential impact of different selection pressures on the cognitive evolution of these large-brained birds
    corecore