38 research outputs found

    Functional immune responses against SARS-CoV-2 variants of concern after fourth COVID-19 vaccine dose or infection in patients with blood cancer

    Get PDF
    Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886), we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralizing antibody titers (NAbTs) using a live virus microneutralization assay against wild-type (WT), Delta, and Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titers and T cell responses after the fourth vaccine dose increased compared with that after the third vaccine dose. Patients who received B cell-depleting therapies within the 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination

    Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study

    Get PDF
    Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer

    Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study

    Get PDF
    Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer

    Adaptive immunity and neutralizing antibodies against SARS-CoV-2 variants of concern following vaccination in patients with cancer: the CAPTURE study

    Get PDF
    Coronavirus disease 2019 (COVID-19) antiviral response in a pan-tumor immune monitoring (CAPTURE) (NCT03226886) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable titers of neutralizing antibodies (NAbT) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) versus wild-type (WT) SARS-CoV-2. Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT than those with solid cancers against both SARS-CoV-2 WT and VOC. By comparison with individuals without cancer, patients with hematological, but not solid, malignancies had reduced neutralizing antibody (NAb) responses. Seroconversion showed poor concordance with NAbT against VOC. Previous SARS-CoV-2 infection boosted the NAb response including against VOC, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T cell responses were detected in 80% of patients and were comparable between vaccines or cancer types. Our results have implications for the management of patients with cancer during the ongoing COVID-19 pandemic

    EANM Procedure Guidelines for Radionuclide Therapy With 177 Lu-labelled PSMA-ligands ( 177 Lu-PSMA-RLT)

    No full text
    Prostate-specific membrane antigen (PSMA) is expressed in most prostate cancers and can be identified by PSMA-ligand imaging, which has already become clinically accepted in several countries in- and outside Europe. PSMA-directed radioligand therapy (PSMA-RLT) with Lutetium-177 (177Lu-PSMA) is currently undergoing clinical validation. Retrospective observational data have documented favourable safety and striking clinical responses. Recent results from a prospective clinical trial (phase II) have been published confirming high response rates, low toxicity and reduction of pain in metastatic castration-resistant prostate cancer (mCRPC) patients who had progressed after conventional treatments. Such patients typically survive for periods less than 1.5 years. This has led some facilities to adopt compassionate or unproven use of this therapy, even in the absence of validation within a randomised-controlled trial. As a result, a consistent body of evidence exists to support efficacy and safety data of this treatment. The purpose of this guideline is to assist nuclear medicine specialists to deliver PSMA-RLT as an "unproven intervention in clinical practice", in accordance with the best currently available knowledge

    Cytokine release syndrome in a patient with colorectal cancer after vaccination with BNT162b2

    Get PDF
    Patients with cancer are currently prioritized in coronavirus disease 2019 (COVID-19) vaccination programs globally, which includes administration of mRNA vaccines. Cytokine release syndrome (CRS) has not been reported with mRNA vaccines and is an extremely rare immune-related adverse event of immune checkpoint inhibitors. We present a case of CRS that occurred 5 d after vaccination with BTN162b2 (tozinameran)—the Pfizer-BioNTech mRNA COVID-19 vaccine—in a patient with colorectal cancer on long-standing anti-PD-1 monotherapy. The CRS was evidenced by raised inflammatory markers, thrombocytopenia, elevated cytokine levels (IFN-γ/IL-2R/IL-18/IL-16/IL-10) and steroid responsiveness. The close temporal association of vaccination and diagnosis of CRS in this case suggests that CRS was a vaccine-related adverse event; with anti-PD1 blockade as a potential contributor. Overall, further prospective pharmacovigillence data are needed in patients with cancer, but the benefit–risk profile remains strongly in favor of COVID-19 vaccination in this population
    corecore