63 research outputs found

    Spatiotemporal Properties of the Action Potential Propagation in the Mouse Visual Cortical Slice Analyzed by Calcium Imaging

    Get PDF
    The calcium ion (Ca2+) is an important messenger for signal transduction, and the intracellular Ca2+ concentration ([Ca2+]i) changes in response to an excitation of the cell. To reveal the spatiotemporal properties of the propagation of an excitatory signal with action potentials in the primary visual cortical circuit, we conducted a Ca2+ imaging study on slices of the mouse visual cortex. Electrical stimulation of layer 4 evoked [Ca2+]i transients around the stimulus electrode. Subsequently, the high [Ca2+]i region mainly propagated perpendicular to the cortical layer (vertical propagation), with horizontal propagation being restricted. When the excitatory synaptic transmission was blocked, only weak and concentric [Ca2+]i transients were observed. When the action potential was blocked, the [Ca2+]i transients disappeared almost completely. These results suggested that the action potential contributed to the induction of the [Ca2+]i transients, and that excitatory synaptic connections were involved in the propagation of the high [Ca2+]i region in the primary visual cortical circuit. To elucidate the involvement of inhibitory synaptic connections in signal propagation in the primary visual cortex, the GABAA receptor inhibitor bicuculline was applied. In this case, the evoked signal propagated from layer 4 to the entire field of view, and the prolonged [Ca2+]i transients were observed compared with the control condition. Our results suggest that excitatory neurons are widely connected to each other over the entire primary visual cortex with recurrent synapses, and inhibitory neurons play a fundamental role in the organization of functional sub-networks by restricting the propagation of excitation signals

    Vision First? The Development of Primary Visual Cortical Networks Is More Rapid Than the Development of Primary Motor Networks in Humans

    Get PDF
    The development of cortical functions and the capacity of the mature brain to learn are largely determined by the establishment and maintenance of neocortical networks. Here we address the human development of long-range connectivity in primary visual and motor cortices, using well-established behavioral measures - a Contour Integration test and a Finger-tapping task - that have been shown to be related to these specific primary areas, and the long-range neural connectivity within those. Possible confounding factors, such as different task requirements (complexity, cognitive load) are eliminated by using these tasks in a learning paradigm. We find that there is a temporal lag between the developmental timing of primary sensory vs. motor areas with an advantage of visual development; we also confirm that human development is very slow in both cases, and that there is a retained capacity for practice induced plastic changes in adults. This pattern of results seems to point to human-specific development of the “canonical circuits” of primary sensory and motor cortices, probably reflecting the ecological requirements of human life

    Timeless Links Replication Termination to Mitotic Kinase Activation

    Get PDF
    The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication

    The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

    Get PDF

    Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression

    Get PDF
    corecore