9 research outputs found

    Hyperfine Structure Constants for Eu Isotopes: Is The Empirical Formula of HFS Anomaly Universal ?

    Get PDF
    We calculate the hyperfine structure constant for the Eu isotopes with shell model wave functions. The calculated results are compared with those predicted by the Moskowitz-Lombardi (M-L) empirical formula. It turns out that the two approaches give the very different behaviors of the hfs constants in the isotope dependence. This should be easily measured by experiment, which may lead to the universality check of the M-L formula.Comment: 18 pages, Latex, two figure

    Proportionate vs disproportionate distribution of wealth of two individuals in a tempered Paretian ensemble

    Get PDF
    We study the distribution P(\omega) of the random variable \omega = x_1/(x_1 + x_2), where x_1 and x_2 are the wealths of two individuals selected at random from the same tempered Paretian ensemble characterized by the distribution \Psi(x) \sim \phi(x)/x^{1 + \alpha}, where \alpha > 0 is the Pareto index and ϕ(x)\phi(x) is the cut-off function. We consider two forms of \phi(x): a bounded function \phi(x) = 1 for L \leq x \leq H, and zero otherwise, and a smooth exponential function \phi(x) = \exp(-L/x - x/H). In both cases \Psi(x) has moments of arbitrary order. We show that, for \alpha > 1, P(\omega) always has a unimodal form and is peaked at \omega = 1/2, so that most probably x_1 \approx x_2. For 0 < \alpha < 1 we observe a more complicated behavior which depends on the value of \delta = L/H. In particular, for \delta < \delta_c - a certain threshold value - P(\omega) has a three-modal (for a bounded \phi(x)) and a bimodal M-shape (for an exponential \phi(x)) form which signifies that in such ensembles the wealths x_1 and x_2 are disproportionately different.Comment: 9 pages, 8 figures, to appear in Physica

    Nuclear Astrophysics and High Energy Particles

    No full text

    Physics of neutrinos

    No full text
    corecore