82 research outputs found

    Graphene-Polyurethane Coatings for Deformable Conductors and Electromagnetic Interference Shielding

    Get PDF
    Electrically conductive, polymeric materials that maintain their conductivity even when under significant mechanical deformation are needed for actuator electrodes, conformable electromagnetic shielding, stretchable tactile sensors, and flexible energy storage. The challenge for these materials is that the percolated, electrically conductive networks tend to separate even at low strains, leading to significant piezoresistance. Herein, deformable conductors are fabricated by spray‐coating a nitrile substrate with a graphene–elastomer solution. The electrical resistance of the coatings shows a decrease after thousands of bending cycles and a slight increase after repeated folding‐unfolding events. The deformable conductors double their electrical resistance at 12% strain and are washable without changing their electrical properties. The conductivity–strain behavior is modeled by considering the nanofiller separation upon deformation. To boost the conductivity at higher strains, the production process is adapted by stretching the nitrile substrate before spraying, after which it is released. This adaption meant that the electrical resistance doubles at 25% strain. The electrical resistance is found sufficiently low to give a 1.9 dB µm−1 shielding in the 8–12 GHz electromagnetic band. The physical and electrical properties, including the electro magnetic screening, of the flexible conductors, are found to deteriorate upon cycling but can be recovered through reheating the coating

    Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications

    Get PDF
    Most polymers are long-lasting and produced from monomers derived from fossil fuel sources. Bio-based and/or biodegradable plastics have been proposed as a sustainable alternative. Amongst those available, polyhydroxyalkanoate (PHA) shows great potential across a large variety of applications but is currently limited to packaging, cosmetics and tissue engineering due to its relatively poor physical properties. An expansion of its uses can be accomplished by developing nanocomposites where PHAs are used as the polymer matrix. Herein, a PHA biopolyester was melt blended with graphene nanoplatelets (GNPs) or with a 1:1 hybrid mixture of GNPs and carbon nanofibers (CNFs). The resulting nanocomposites exhibited enhanced thermal stability while their Young's modulus roughly doubled compared to pure PHA. The hybrid nanocomposites percolated electrically at lower nanofiller loadings compared to the GNP-PHA system. The electrical conductivity at 15 wt.% loading was ~ 6 times higher than the GNP-based sample. As a result, the electromagnetic interference shielding performance of the hybrid material was around 50% better than the pure GNPs nanocomposites, exhibiting shielding effectiveness above 20 dB, which is the threshold for common commercial applications. The thermal conductivity increased significantly for both types of bio-nanocomposites and reached values around 5 W K-1 m-1 with the hybrid-based material displaying the best performance. Considering the solvent-free and industrially compatible production method, the proposed multifunctional materials are promising to expand the range of application of PHAs and increase the environmental sustainability of the plastic and plastic electronics industry.Comment: 26 page

    Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects

    Get PDF
    Palaeoenvironmental DNA (PalEnDNA) is defined as ancient DNA (aDNA) originating from disseminated genetic material within palaeoenvironmental samples. Sources of PalEnDNA include marine and lake sediments, peat, loess, till, ice, permafrost, palaeosols, coprolites, preserved gut contents, dental calculus, tephras, and soils as well as deposits in caves/rockshelters and at archaeological sites. PalEnDNA analysis provides a relatively new tool for Quaternary and archaeological sciences and its applications have included palaeoenvironmental and palaeodietary reconstructions, testing hypotheses regarding megafaunal extinctions, human–environment interactions, taxonomic studies and studies of DNA damage. Because PalEnDNA samples comprise markedly different materials, and represent wide-ranging depositional and taphonomic contexts, various issues must be addressed to achieve robust, reproducible findings. Such issues include climatic and temporal limitations, the biological origin and state (free versus bound) of PalEnDNA, stratigraphic reliability, sterile sampling, ability to distinguish modern from aDNA signals, DNA damage and PCR amplification, DNA extraction methods, and taxonomic resolution. In this review, we provide a non-specialist introduction to the use of PalEnDNA for Quaternary and archaeological researchers, assess attributes and limitations of this palaeoenvironmental tool, and discuss future prospects of using PalEnDNA to reconstruct past environments

    Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice

    Get PDF
    Several vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies

    Local staging of rectal cancer: the current role of MRI

    Get PDF
    With the advent of powerful gradient coil systems and high-resolution surface coils, magnetic resonance imaging (MRI) has recently extended its role in the staging of rectal cancer. MRI is superior to endorectal ultrasound, the most widely used staging modality in patients with rectal tumors, in that it visualizes not only the intestinal wall but also the surrounding pelvic anatomy. The crucial advantage of MRI is not that it enables exact T-staging but precise evaluation of the topographic relationship of a tumor to the mesorectal fascia. This fascia is the most important anatomic landmark for the feasibility of total mesorectal excision, which has evolved into the standard operative procedure for the resection of cancer located in the middle or lower third of the rectum. MRI is currently the only imaging modality that is highly accurate in predicting whether or not it is likely that a tumor-free margin can be achieved and thus provides important information for planning of an effective therapeutic strategy, especially in patients with advanced rectal cancer

    Platinum drugs in the treatment of non-small-cell lung cancer

    Get PDF
    The use of chemotherapy is considered standard therapy in patients with locally advanced non-small-cell lung cancer that cannot be treated with radiotherapy and in those with metastatic non-small-cell lung cancer and good performance status. This approach is also accepted in patients with earlier stage disease, when combined with radiotherapy in those with non-resectable locally advanced disease, or in the preoperative setting. Randomised clinical studies and meta-analyses of the literature have confirmed the beneficial survival effect of platinum-based chemotherapy. Cisplatin and carboplatin have been successfully used with other drugs in a wide variety of well-established two-drug combinations while three-drug combinations are still under investigation. Cisplatin and carboplatin use is limited by toxicity and inherent resistance. These considerations have prompted research into new platinum agents, such as the trinuclear platinum agent BBR3464, the platinum complex ZD0473 and oxaliplatin. These compounds could be developed in combination with agents such as paclitaxel, gemcitabine or vinorelbine in patients with advanced and/or refractory solid tumours

    PILONIDAL DISEASE

    No full text

    Cutaneous short-interfering RNA therapy

    No full text
    Since the 1990s, RNA interference (RNAi) has become a major subject of interest, not only as a tool for biological research, but also, more importantly, as a therapeutic approach for gene-related diseases. The use of short-interfering RNAs (siRNAs) for the sequence-specific knockdown of disease-causing genes has led to numerous preclinical and even a few clinical studies. Applications for cutaneous delivery of therapeutic siRNA are now emerging owing to a strong demand for effective treatments of various cutaneous disorders. Although successful studies have been performed using several different delivery techniques, most of these techniques encounter limitations for translation to the clinic with regards to patient compliance. This review describes the principal findings and applications in cutaneous RNAi therapy and focuses on the promises and pitfalls of the delivery systems
    corecore