9,224 research outputs found

    The Step-Harmonic Potential

    Get PDF
    We analyze the behavior of a quantum system described by a one-dimensional asymmetric potential consisting of a step plus a harmonic barrier. We solve the eigenvalue equation by the integral representation method, which allows us to classify the independent solutions as equivalence classes of homotopic paths in the complex plane. We then consider the propagation of a wave packet reflected by the harmonic barrier and obtain an expression for the interaction time as a function of the peak energy. For high energies we recover the classical half-period limit.Comment: 19 pages, 7 figure

    Kinetics of first-order phase transitions from microcanonical thermostatistics

    Full text link
    More than a century has passed since van't Hoff and Arrhenius formulated their celebrated rate theories, but there are still elusive aspects in the temperature-dependent phase transition kinetics of molecular systems. Here I present a theory based on microcanonical thermostatistics that establishes a simple and direct temperature dependence for all rate constants, including the forward and the reverse rate constants, the equilibrium constant, and the nucleation rate. By considering a generic model that mimic the microcanonical temperature of molecular systems in a region close to a first-order phase transition, I obtain shape-free relations between kinetics and thermodynamics physical quantities which are validated through stochastic simulations. Additionally, the rate theory is applied to results obtained from protein folding and ice nucleation experiments, demonstrating that the expressions derived here can be used to describe the experimental data of a wide range of molecular systems.Comment: 22 pages, 5 figure

    Spacetime geometries and light trapping in travelling refractive index perturbations

    Full text link
    In the framework of transformation optics, we show that the propagation of a locally superluminal refractive index perturbation (RIP) in a Kerr medium can be described, in the eikonal approximation, by means of a stationary metric, which we prove to be of Gordon type. Under suitable hypotheses on the RIP, we obtain a stationary but not static metric, which is characterized by an ergosphere and by a peculiar behaviour of the geodesics, which are studied numerically, also accounting for material dispersion. Finally, the equation to be satisfied by an event horizon is also displayed and briefly discussed.Comment: 14 pages, 7 figure
    corecore