41 research outputs found

    Measurement of D0-D0 mixing and search for CP violation in D0→K+K-,π+π- decays with the full Belle data set

    Get PDF
    We report an improved measurement of D0 – D‾0 mixing and a search for CP violation in D0 decays to CP -even final states K+K− and π+π− . The measurement is based on the final Belle data sample of 976 fb −1 . The results are yCP=(1.11±0.22±0.09)% and AΓ=(−0.03±0.20±0.07)% , where the first uncertainty is statistical and the second is systematic

    Measurement of time-dependent CP violation in B-0 - eta \u27 K-0 decays

    Get PDF

    The Physics of the B Factories

    Get PDF

    Automatic Abstraction of Memories in the Formal Verification of Superscalar Microprocessors

    No full text
    A system of conservative transformation rules is presented for abstracting memories whose forwarding logic interacts with stalling conditions for preserving the memory semantics in microprocessors with in-order execution. Microprocessor correctness is expressed in the logic of Equality with Uninterpreted Functions and Memories (EUFM) [6]. Memory reads and writes are abstracted as arbitrary uninterpreted functions in such a way that the forwarding property of the memory semantics---that a read returns the data most recently written to an equal write address---is satisfied completely only when exactly the same pair of one read and one write address is compared for equality in the stalling logic. These transformations are applied entirely automatically by a tool for formal verification of microprocessors, based on EUFM, the Burch and Dill flushing technique [6], and the properties of Positive Equality [3]. An order of magnitude reduction is achieved in the number of e ij Boolean variables [9] that encode the equality comparisons of register identifiers in the correctness formulas for single-issue pipelined and dual-issue superscalar microprocessors with multicycle functional units, exceptions, and branch prediction. That results in up to 40 reduction in the CPU time for the formal verification of the dual-issue superscalar microprocessors

    EVC: A Validity Checker for the Logic of Equality with Uninterpreted Functions and Memories, Exploiting Positive Equality, and Conservative Transformations

    No full text
    The property of Positive Equality [2] dramatically speeds up validity checking of formulas in the logic of Equality with Uninterpreted Functions and Memories (EUFM) [4]. The logic expresses correctness of high-level microprocessors. We presen

    Polyaniline nanoparticles for the selective recognition of aldrin: Synthesis, characterization, and adsorption properties

    No full text
    We report the preparation, characterization, and property evaluation of molecularly imprinted polyaniline nanoparticles that can be used for the selective recognition of aldrin. The molecularly imprinted polyaniline nanoparticles were prepared by inverted emulsion polymerization using aldrin as a template and aniline as a functional monomer. The prepared nanoparticles were characterized using UV–vis spectroscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The spectral data confirmed that aldrin was successfully incorporated into the polymer matrix. Atomic force microscopy and scanning electron microscopy analyses revealed that the prepared nanoparticles were spherical in nature with sizes ranging from 60 to 100 nm for nonimprinted particles and from 500 to 1500 nm for imprinted particles. The surface morphology changed from smooth to rough upon the incorporation of aldrin molecules. The electrical properties were evaluated using a four-point probe coupled to a source meter. The nonimprinted nanoparticles showed an electrical conductivity of 4.149 S/cm, which was reduced to 0.546 S/cm in molecularly imprinted polyaniline. The equilibrium dissociation constant and free equilibrium concentration were found to be 0.6 and 0.799 ng/μL, respectively. The adsorption characteristics of aldrin and dichlorodiphenyltrichloroethane (DDT) were investigated to determine the selectivity of the imprinted nanoparticles. The distribution coefficients for DDT and aldrin were 0.76 ng/ng and 1.31 μL/ng, respectively, indicating that the imprinted nanoparticles had a stronger affinity for aldrin than for DDT.The International Programme in Chemical Sciences (IPICS), Uppsala University, Sweden.https://www.elsevier.com/locate/synmet2018-11-01hj2018Physic
    corecore