1,562 research outputs found
Riemann Surfaces of genus g with an automorphism of order p prime and p>g
The present work completes the classification of the compact Riemann surfaces
of genus g with an analytic automorphism of order p (prime number) and p > g.
More precisely, we construct a parameteriza- tion space for them, we compute
their groups of uniformization and we compute their full automorphism groups.
Also, we give affine equations for special cases and some implications on the
components of the singular locus of the moduli space of smooth curves of genus
g.Comment: 28 pages, 5 figure
From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains
We reconsider the excitation spectra of a dimerized and frustrated
antiferromagnetic Heisenberg chain. This model is taken as the simpler example
of compiting spontaneous and explicit dimerization relevant for Spin-Peierls
compounds. The bosonized theory is a two frequency Sine-Gordon field theory. We
analize the excitation spectrum by semiclassical methods. The elementary
triplet excitation corresponds to an extended magnon whose radius diverge for
vanishing dimerization. The internal oscilations of the magnon give rise to a
series of excited state until another magnon is emited and a two magnon
continuum is reached. We discuss, for weak dimerization, in which way the
magnon forms as a result of a spinon-spinon interaction potential.Comment: 5 pages, latex, 3 figures embedded in the tex
Recent progress in the truncated Lanczos method : application to hole-doped spin ladders
The truncated Lanczos method using a variational scheme based on Hilbert
space reduction as well as a local basis change is re-examined. The energy is
extrapolated as a power law function of the Hamiltonian variance. This
systematic extrapolation procedure is tested quantitatively on the two-leg t-J
ladder with two holes. For this purpose, we have carried out calculations of
the spin gap and of the pair dispersion up to size 2x15.Comment: 5 pages, 4 included eps figures, submitted to Phys. Rev. B; revised
versio
On the soliton width in the incommensurate phase of spin-Peierls systems
We study using bosonization techniques the effects of frustration due to
competing interactions and of the interchain elastic couplings on the soliton
width and soliton structure in spin-Peierls systems. We compare the predictions
of this study with numerical results obtained by exact diagonalization of
finite chains. We conclude that frustration produces in general a reduction of
the soliton width while the interchain elastic coupling increases it. We
discuss these results in connection with recent measurements of the soliton
width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex
The complex structure of HH 110 as revealed from Integral Field Spectroscopy
HH 110 is a rather peculiar Herbig-Haro object in Orion that originates due
to the deflection of another jet (HH 270) by a dense molecular clump, instead
of being directly ejected from a young stellar object. Here we present new
results on the kinematics and physical conditions of HH 110 based on Integral
Field Spectroscopy. The 3D spectral data cover the whole outflow extent (~4.5
arcmin, ~0.6 pc at a distance of 460 pc) in the spectral range 6500-7000 \AA.
We built emission-line intensity maps of H, [NII] and [SII] and of
their radial velocity channels. Furthermore, we analysed the spatial
distribution of the excitation and electron density from [NII]/H,
[SII]/H, and [SII] 6716/6731 integrated line-ratio maps, as well as
their behaviour as a function of velocity, from line-ratio channel maps. Our
results fully reproduce the morphology and kinematics obtained from previous
imaging and long-slit data. In addition, the IFS data revealed, for the first
time, the complex spatial distribution of the physical conditions (excitation
and density) in the whole jet, and their behaviour as a function of the
kinematics. The results here derived give further support to the more recent
model simulations that involve deflection of a pulsed jet propagating in an
inhomogeneous ambient medium. The IFS data give richer information than that
provided by current model simulations or laboratory jet experiments. Hence,
they could provide valuable clues to constrain the space parameters in future
theoretical works.Comment: 12 pages, 15 figures Accepted in MNRA
Rapid Suppression of the Spin Gap in Zn-doped CuGeO_3 and SrCu_2O_3
The influence of non-magnetic impurities on the spectrum and dynamical spin
structure factor of a model for CuGeO is studied. A simple extension to
Zn-doped is also discussed. Using Exact Diagonalization
techniques and intuitive arguments we show that Zn-doping introduces states in
the Spin-Peierls gap of CuGeO. This effect can beunderstood easily in the
large dimerization limit where doping by Zn creates ``loose'' S=1/2 spins,
which interact with each other through very weak effective antiferromagnetic
couplings. When the dimerization is small, a similar effect is observed but now
with the free S=1/2 spins being the resulting S=1/2 ground state of severed
chains with an odd number of sites. Experimental consequences of these results
are discussed. It is interesting to observe that the spin correlations along
the chains are enhanced by Zn-doping according to the numerical data presented
here. As recent numerical calculations have shown, similar arguments apply to
ladders with non-magnetic impurities simply replacing the tendency to
dimerization in CuGeO by the tendency to form spin-singlets along the rungs
in SrCuO.Comment: 7 pages, 8 postscript figures, revtex, addition of figure 8 and a
section with experimental predictions, submmited to Phys. Rev. B in May 199
Diagonalization in Reduced Hilbert Spaces using a Systematically Improved Basis: Application to Spin Dynamics in Lightly Doped Ladders
A method is proposed to improve the accuracy of approximate techniques for
strongly correlated electrons that use reduced Hilbert spaces. As a first step,
the method involves a change of basis that incorporates exactly part of the
short distance interactions. The Hamiltonian is rewritten in new variables that
better represent the physics of the problem under study. A Hilbert space
expansion performed in the new basis follows. The method is successfully tested
using both the Heisenberg model and the model with holes on 2-leg ladders
and chains, including estimations for ground state energies, static
correlations, and spectra of excited states. An important feature of this
technique is its ability to calculate dynamical responses on clusters larger
than those that can be studied using Exact Diagonalization. The method is
applied to the analysis of the dynamical spin structure factor on
clusters with sites and 0 and 2 holes. Our results confirm
previous studies (M. Troyer, H. Tsunetsugu, and T. M. Rice, Phys. Rev. ,
251 (1996)) which suggested that the state of the lowest energy in the spin-1
2-holes subspace corresponds to the bound state of a hole pair and a
spin-triplet. Implications of this result for neutron scattering experiments
both on ladders and planes are discussed.Comment: 9 pages, 8 figures, Revtex + psfig; changed conten
Study of impurities in spin-Peierls systems including lattice relaxation
The effects of magnetic and non-magnetic impurities in spin-Peierls systems
are investigated allowing for lattice relaxation and quantum fluctuations. We
show that, in isolated chains, strong bonds form next to impurities, leading to
the appearance of magneto-elastic solitons. Generically, these solitonic
excitations do not bind to impurities. However, interchain elastic coupling
produces an attractive potential at the impurity site which can lead to the
formation of bound states. In addition, we predict that small enough chain
segments do not carry magnetic moments at the ends
Optical conductivity of the Hubbard model at finite temperature
The optical conductivity, , of the two dimensional one-band
Hubbard model is calculated at finite temperature using exact diagonalization
techniques on finite clusters. The in-plane d.c. resistivity, , is
also evaluated. We find that at large U/t and temperature T, is
approximately linear with temperature, in reasonable agreement with experiments
on high-T superconductors. Moreover, we note that displays
charge excitations, a mid-infrared (MIR) band and a Drude peak, also as
observed experimentally. The combination of the Drude peak and the MIR
oscillator strengths leads to a conductivity that decays slower than
at energies smaller than the insulator gap near half-filling.Comment: 12 pages, 3 figures appended, Revtex version 2.0, preprin
- âŠ