118 research outputs found

    Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in <it>in vivo </it>experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their <it>in vitro </it>complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II).</p> <p>Results</p> <p>New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>1</b>) and [Pb(Sal)(NO<sub>3</sub>)] (<b>2</b>), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield <b>1</b>. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex <b>2 </b>consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation.</p> <p>Conclusion</p> <p>The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming.</p

    Point-of-care testing and treatment of sexually transmitted and genital infections during pregnancy in Papua New Guinea (WANTAIM trial): protocol for an economic evaluation alongside a cluster-randomised trial

    Get PDF
    INTRODUCTION: Left untreated, sexually transmitted and genital infections (henceforth STIs) in pregnancy can lead to serious adverse outcomes for mother and child. Papua New Guinea (PNG) has among the highest prevalence of curable STIs including syphilis, chlamydia, gonorrhoea, trichomoniasis and bacterial vaginosis, and high neonatal mortality rates. Diagnosis and treatment of these STIs in PNG rely on syndromic management. Advances in STI diagnostics through point-of-care (PoC) testing using GeneXpert technology hold promise for resource-constrained countries such as PNG. This paper describes the planned economic evaluation of a cluster-randomised cross-over trial comparing antenatal PoC testing and immediate treatment of curable STIs with standard antenatal care in two provinces in PNG. METHODS AND ANALYSIS: Cost-effectiveness of the PoC intervention compared with standard antenatal care will be assessed prospectively over the trial period (2017-2021) from societal and provider perspectives. Incremental cost-effectiveness ratios will be calculated for the primary health outcome, a composite measure of the proportion of either preterm birth and/or low birth weight; for life years saved; for disability-adjusted life years averted; and for non-health benefits (financial risk protection and improved health equity). Scenario analyses will be conducted to identify scale-up options, and budget impact analysis will be undertaken to understand short-term financial impacts of intervention adoption on the national budget. Deterministic and probabilistic sensitivity analysis will be conducted to account for uncertainty in key model inputs. ETHICS AND DISSEMINATION: This study has ethical approval from the Institutional Review Board of the PNG Institute of Medical Research; the Medical Research Advisory Committee of the PNG National Department of Health; the Human Research Ethics Committee of the University of New South Wales; and the Research Ethics Committee of the London School of Hygiene and Tropical Medicine. Findings will be disseminated through national stakeholder meetings, conferences, peer-reviewed publications and policy briefs. TRIAL REGISTRATION NUMBER: ISRCTN37134032

    Treatment of two postoperative endophthalmitis cases due to Aspergillus flavus and Scopulariopsis spp. with local and systemic antifungal therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endophthalmitis is the inflammatory response to invasion of the eye with bacteria or fungi. The incidence of endophthalmitis after cataract surgery varies between 0.072–0.13 percent. Treatment of endophthalmitis with fungal etiology is difficult.</p> <p>Case Presentation</p> <p><b>Case 1: </b>A 71-year old male diabetic patient developed postoperative endophthalmitis due to <it>Aspergillus flavus</it>. The patient was treated with topical amphotericin B ophthalmic solution, intravenous (IV) liposomal amphotericin-B and caspofungin following vitrectomy.</p> <p><b>Case 2: </b>A 72-year old male cachectic patient developed postoperative endophthalmitis due to <it>Scopulariopsis </it>spp. The patient was treated with topical and IV voriconazole and caspofungin.</p> <p>Conclusion</p> <p><it>Aspergillus </it>spp. are responsible of postoperative fungal endophthalmitis. Endophthalmitis caused by <it>Scopulariopsis </it>spp. is a very rare condition. The two cases were successfully treated with local and systemic antifungal therapy.</p

    SARS-CoV-2 can recruit a haem metabolite to evade antibody immunity.

    Get PDF
    The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of haem metabolism, with nanomolar affinity. Using cryo-electron microscopy and X-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through the recruitment of a metabolite

    Impaired Growth and Force Production in Skeletal Muscles of Young Partially Pancreatectomized Rats: A Model of Adolescent Type 1 Diabetic Myopathy?

    Get PDF
    This present study investigated the temporal effects of type 1 diabetes mellitus (T1DM) on adolescent skeletal muscle growth, morphology and contractile properties using a 90% partial pancreatecomy (Px) model of the disease. Four week-old male Sprague-Dawley rats were randomly assigned to Px (n = 25) or Sham (n = 24) surgery groups and euthanized at 4 or 8 weeks following an in situ assessment of muscle force production. Compared to Shams, Px were hyperglycemic (>15 mM) and displayed attenuated body mass gains by days 2 and 4, respectively (both P<0.05). Absolute maximal force production of the gastrocnemius plantaris soleus complex (GPS) was 30% and 50% lower in Px vs. Shams at 4 and 8 weeks, respectively (P<0.01). GP mass was 35% lower in Px vs Shams at 4 weeks (1.24±0.06 g vs. 1.93±0.03 g, P<0.05) and 45% lower at 8 weeks (1.57±0.12 vs. 2.80±0.06, P<0.05). GP fiber area was 15–20% lower in Px vs. Shams at 4 weeks in all fiber types. At 8 weeks, GP type I and II fiber areas were ∼25% and 40% less, respectively, in Px vs. Shams (group by fiber type interactions, P<0.05). Phosphorylation states of 4E-BP1 and S6K1 following leucine gavage increased 2.0- and 3.5-fold, respectively, in Shams but not in Px. Px rats also had impaired rates of muscle protein synthesis in the basal state and in response to gavage. Taken together, these data indicate that exposure of growing skeletal muscle to uncontrolled T1DM significantly impairs muscle growth and function largely as a result of impaired protein synthesis in type II fibers

    Accumulation of mitochondrial DNA mutation with colorectal carcinogenesis in ulcerative colitis

    Get PDF
    We recently reported that oxidative stress elicited by chronic inflammation increases the mutation of mitochondrial DNA (mtDNA) and possibly correlates with precancerous status. Since severe oxidative stress is elicited in the colorectal mucosa of individuals with ulcerative colitis (UC), the possible occurrence of an mtDNA mutation in the inflammatory colorectal mucosa and colitic cancer was investigated. Colorectal mucosal specimens were obtained from individuals with UC with and without colitic cancer and from control subjects. The frequency of mtDNA mutations was higher in colorectal mucosal specimens from patients with UC than that from control subjects. The levels of 8-hydroxy-2′-deoxyguanosine, a DNA adduct by reactive oxygen species, were significantly higher in UC than in control. Specimens from patients with colitic cancer contained a significantly higher number of mtDNA mutations. The present observations suggest that the injury followed by the regeneration of colorectal mucosal cells associated with chronic inflammation causes accumulation of mtDNA mutations. The increased instability of genes, including those on the mtDNA, is consistent with the high and multicentric incidence of colorectal cancer in individuals with UC. Thus, analysis of mtDNA could provide a new criterion for the therapeutic evaluation, and may be useful for the prediction of risk of carcinogenesis

    In Vivo Human Apolipoprotein E Isoform Fractional Turnover Rates in the CNS

    Get PDF
    Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer’s disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer’s disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ) peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS), we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis

    SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity

    Get PDF
    The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo–electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite
    corecore