28 research outputs found

    Correlation Between Acoustic Rhinometry, Computed Rhinomanometry And Cone-beam Computed Tomography In Mouth Breathers With Transverse Maxillary Deficiency

    Get PDF
    To provide clinical information and diagnosis in mouth breathers with transverse maxillary deficiency with posterior crossbite. Numerous exams can be performed; however, the correlation among these exams remains unclear. Objective: To evaluate the correlation between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. Methods: A cross-sectional study was conducted in 30 mouth breathers with transverse maxillary deficiency (7-13 y.o.) patients with posterior crossbite. The examinations assessed: (i) acoustic rhinometry: nasal volumes (0-5. cm and 2-5. cm) and minimum cross-sectional areas 1 and 2 of nasal cavity; (ii) computed rhinomanometry: flow and average inspiratory and expiratory resistance; (iii) cone-beam computed tomography: coronal section on the head of inferior turbinate (Widths 1 and 2), middle turbinate (Widths 3 and 4) and maxilla levels (Width 5). acoustic rhinometry and computed rhinomanometry were evaluated before and after administration of vasoconstrictor. Results were compared by Spearman's correlation and Mann-Whitney tests (α = 0.05). Results: Positive correlation was observed between: (i) flow evaluated before administration of vasoconstrictor and Width 4 (Rho = 0.380) and Width 5 (Rho = 0.371); (ii) Width 2 and minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.380); (iii) flow evaluated before administration of vasoconstrictor and nasal volumes of 0-5. cm (Rho = 0.421), 2-5. cm (Rho = 0.393) and minimum cross-sectional areas 1 (Rho = 0.375); (iv) Width 4 and nasal volumes of 0-5. cm evaluated before administration of vasoconstrictor (Rho = 0.376), 2-5. cm evaluated before administration of vasoconstrictor (Rho = 0.376), minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.410) and minimum cross-sectional areas 1 after administration of vasoconstrictor (Rho = 0.426); (v) Width 5 and Width 1 (Rho = 0.542), Width 2 (Rho = 0.411), and Width 4 (Rho = 0.429). Negative correlation was observed between: (i) Width 4 and average inspiratory resistance (Rho = -0.385); (ii) average inspiratory resistance evaluated before administration of vasoconstrictor and volume of 0-5. cm (Rho = -0.382), and average expiratory resistance evaluated before administration of vasoconstrictor and minimum cross-sectional areas 1 (Rho = -0.362). Conclusion: There was correlation between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial

    Spirometry And Volumetric Capnography In Lung Function Assessment Of Obese And Normal-weight Individuals Without Asthma

    Get PDF
    To analyze and compare lung function of obese and healthy, normal-weight children and adolescents, without asthma, through spirometry and volumetric capnography. Methods: Cross-sectional study including 77 subjects (38 obese) aged 5-17 years. All subjects underwent spirometry and volumetric capnography. The evaluations were repeated in obese subjects after the use of a bronchodilator. Results: At the spirometry assessment, obese individuals, when compared with the control group, showed lower values of forced expiratory volume in the first second by forced vital capacity (FEV1/FVC) and expiratory flows at 75% and between 25 and 75% of the FVC (p <0.05). Volumetric capnography showed that obese individuals had a higher volume of produced carbon dioxide and alveolar tidal volume (p <0.05). Additionally, the associations between dead space volume and tidal volume, as well as phase-3 slope normalized by tidal volume, were lower in healthy subjects (p <0.05). These data suggest that obesity does not alter ventilation homogeneity, but flow homogeneity. After subdividing the groups by age, a greater difference in lung function was observed in obese and healthy individuals aged >11 years (p <0.05). Conclusion: Even without the diagnosis of asthma by clinical criteria and without response to bronchodilator use, obese individuals showed lower FEV1/FVC values and forced expiratory flow, indicating the presence of an obstructive process. Volumetric capnography showed that obese individuals had higher alveolar tidal volume, with no alterations in ventilation homogeneity, suggesting flow alterations, without affecting lung volumes. © 2017 Sociedade Brasileira de Pediatria

    Validation of fracture envelopes of structural adhesives for mixed-mode strength prediction of bonded joints

    Get PDF
    In the design of adhesive structures, it is extremely important to accurately predict their strength and fracture properties (critical strain energy release rate in tension, GIC, and shear, GIIC). In most cases, the loads occur in mixed-mode (tension plus shear). Thus, it is of great importance the perception of fracture in these conditions, namely of the strain energy release rates in tension, GI, and shear, GII, relative to different crack propagation criteria or fracture envelopes. This comparison allows to determine the most suitable energetic propagation criterion to be used in cohesive zone models (CZM). The main objective of this work is to verify, by CZM, which is the power parameter (?) that best suits the energetic crack propagation criterion for CZM modelling, using single-lap joints (SLJ) and double-lap joints (DLJ) with aluminium adherends and bonded with three different adhesives. With this purpose, numerical simulations of the SLJ and DLJ are carried out, and the maximum load (Pm) is compared with experiments. For the Araldite AV138 and Araldite鮮 2015, the energetic criterion resulting from the experimental work provided matching numerical results and, thus, the fracture envelopes were validated. The Sikaforce� 7752 results were slightly offset due to CZM law shape issues

    Pulsed Direct And Constant Direct Currents In The Pilocarpine Iontophoresis Sweat Chloride Test

    Get PDF
    Background: The classic sweat test (CST) is the golden standard for cystic fibrosis (CF) diagnosis. Then, our aim was compare the production and volume of sweat, and side effects caused by pulsed direct current (PDC) and constant direct current (CDC). To determine the optimal stimulation time (ST) for the sweat collection. To verify the PDC as CF diagnosis option. Methods: Prospective study with cross-sectional experimental intervention. Experiment 1 (right arm): PDC and CDC. ST at 10 min and sweat collected at 30 min. Currents of 0.5; 0.75; 1.0 and 1.5 mA and frequencies of 0, 200, 1,000 and 5,000 Hz applied. Experiment 2 (left arm): current of 1.0 mA, ST at 5 and 10 min and sweat collected at 15 and 30 min with frequencies of 0; 200; 1,000 and 5,000 Hz applied Experiments 1 and 2 were performed with current density (CD) from 0.07 to 0.21 mA/cm2. Experiment 3: PDC was used in typical CF patients with two CFTR mutations screened and or with CF diagnosis by rectal biopsy and patients with atypical CF. Results: 48 subjects (79.16% female) with average of 29.54 ± 8.87 years old were enrolled. There was no statistical difference between the interaction of frequency and current in the sweat weight (p = 0.7488). Individually, positive association was achieved between weight sweat and stimulation frequency (p = 0.0088); and current (p = 0.0025). The sweat production was higher for 10 min of stimulation (p = 0.0023). The sweat collection was better for 30 min (p = 0.0019). The skin impedance was not influenced by ST and sweat collection (p > 0.05). The current frequency was inversely associated with the skin impedance (p < 0.0001). The skin temperature measured before stimulation was higher than after (p < 0.0001). In Experiment 3 (29 subjects) the PDC showed better kappa index compared to CDC (0.9218 versus 0.5205, respectively). Conclusions: The performance of the CST with CDC and PDC with CD of 0.14 to 0.21 mA/cm2 showed efficacy in steps of stimulation and collection of sweat, without side effects. The optimal stimulation time and sweat collection were, respectively, 10 and 30 min.141Di Sant'S Agnese, P.A., Darling, R.C., Perara, G.A., Shea, E., Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas (1953) Am J Dis Child, 86, pp. 618-619Gibson, L.E., Cooke, R.E., A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis (1959) Pediatrics, 23, pp. 545-549Taylor, C.J., Hardcastle, J., Southern, K.W., Physiological measurements confirming the diagnosis of cystic fibrosis. The sweat test and measurements of transepithelial potential difference (2009) Paedia Resp Rev, 10, pp. 220-226Rosenstein, B.J., What is a cystic fibrosis diagnosis? (1998) Clin Chest Med, 19, pp. 423-441Rowe, S.M., Miller, S., Sorscher, E.J., Cystic fibrosis (2005) N Engl J Med, 352, pp. 1992-2001Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation Consensus Report (2008) J Pediatr, 153, pp. S4-e14Castellani, C., Southern, K.W., Brownlee, K., DankertRoelse, J., Duff, A., Farrell, M., Mehta, A., Elborn, S., European best practice guidelines for cystic fibrosis neonatal screening (2009) J Cystic Fibrosis, 8, pp. 153-173Quinton, P.M., Cystic fibrosis: lesson from the sweat gland (2007) Physiology (Bethesda), 22, pp. 212-225Quinton, P.M., Chloride impermeability in cystic fibrosis (1983) Nature, 301, pp. 421-422Collie, J.T.B., Massie, R.J., Jones, O.A.H., LeGrys, V.A., Greaves, R.F., Sixty-Five Years Since the New York Heat Wave: Advances in Sweat Testing for Cystic Fibrosis (2014) Pediatr Pulmonol, 49, pp. 106-117Legrys, V.A., Sweat testing for the diagnosis of cystic fibrosis. Practical considerations (1996) J Pedia, 129, pp. 892-897Gonçalves, A.C., Marson, F.A.L., Mendonça, R.M.H., Ribeiro, J.D., Ribeiro, A.F., Paschoal, I.A., Levy, C.E., Saliva as a potential tool for cystic fibrosisdiagnosis (2013) Diagn Pathol, 8, p. 46Webster, H.L., A clinical appraisal of cystic fibrosis sweat-testing guidelines (2001) Am Clin Lab, 20, pp. 39-42Hammond, K.B., Nelson, L., Gibson, L.E., Clinical evaluation of the macroduct sweat collection system and conductivity analyzer in the diagnosis of cystic fibrosis (1994) J Pediatr, 124, pp. 255-260Portaria N° 288, 21 de Março de 2013. Diário oficial da união, Brasília, N° 56 - DOU - 22/03/13 - seção 1 , p. 47. , ftp://ftp.saude.sp.gov.br/ftpsessp/bibliote/informe_eletronico/2013/iels.mar.13/Iels55/U_PT-MS-SAS-288_210313.pdf, BrasilNumajiri, S., Sakurai, H., Sugibayashi, K., Morimoto, Y., Omiya, H., Takenaka, H., Akiyama, N., Comparison of depolarizing and direct current systems on iontophoretic enhancement of transport of sodium benzoate through human and hairless rat skin (1993) J Pharm Pharmcol, 45, pp. 610-613Zakzewski, C.A., Amory, D.W., Jasaitis, D.K., Li, J.K.J., Iontophoretically enhanced transdermal delivery of an ACE inhibitor in induced hypertensive rabbits: preliminary report (1992) CardiovascularDrugs and Therapy, 6, pp. 589-595Bagniefski, T.M., Burnette, R.R., A comparison of pulsed and continuous current iontophoresis (1990) J Cont Release, 11, pp. 113-122Preat, V., Thysman, S., Trandermaliontophoreric delivery of sulfentanilInt (1993) J Pharmaceut, 96, pp. 189-196(2000) Obesity: Preventing and managing the global epidemic, , Geneva: World Health Organization Technical Support Series, 894, Geneva: World Health OrganizationSousa, M., Servidoni, M.F., Vinagre, A.M., Ramalho, A.S., Bonadia, L.C., Felício, V., Ribeiro, M.A., Amaral, M.D., Measurements of CFTR-mediated Cl- secretion in human rectal biopsies constitute a robust biomarker for Cystic Fibrosis diagnosis and prognosis (2012) Plos One, 7, p. e47708Carlsson, A.M., Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale (1983) Pain, 16, pp. 87-101Rosenstein, B.J., Cutting, G.R., The diagnosis of cystic fibrosis: a consensus statement. Cystic Fibrosis Foundation Consensus Panel (1998) J Pediatr, 132, pp. 589-595Karezeski, B., Cutting, G., Diagnosis of cystic fibrosis. CFTR-related disease and screening (2006) ProgRespir Res, 34, pp. 69-76Strausbaugh, S.D., Davis, P.B., Cystic fibrosis: a review of epidemiology and pathobiology (2007) Clin Chest Med, 28, pp. 279-288Mackay, R., George, P., Kirk, J., Sweat testing for cystic fibrosis: A review of New Zealand laboratories (2006) J Paedia Child Health, 42, pp. 160-164Cirilli, N., Podan, R., Raia, V., Audit of sweat testing: A first report from Italian cystic fibrosis centres (2008) J Cystic Fibrosis, 7, pp. 415-422Kirk, J.M., Inconsistencies in sweat testing in UK laboratories (2000) Arch Dis Child, 82, pp. 425-427Webster, H.L., Laboratory diagnosis of cystic fibrosis (1983) CRC Crit Rev in Clin LabSci, 18, pp. 313-338http://www.wescor.com/biomedical/cysticfibrosis/macroduct.htmlSabbahi, M.A., Costello, C.T., Ernran, A., A method for reducing skin irritation by iontophoresis (1994) PhysTher, 74, p. S156Su, M.H., Srinivasan, V., Ghanem, A.H., Higuchi, W.I., Quantitative in vivo iontophoreticstudies (1994) J Pharm Sci, 83, pp. 12-17Huang, Y.-Y., Wu, S.-M., Transdermal Iontophoretic Delivery of Thyrotropin-Releasing Hormone Across Excised Rabbit Pinna Skin Drug Dev (1996) Ind Pharm, 22, pp. 1075-1081Knoblauch, P., Moll, F., In vitro pulsatile and continuous transdermal delivery of buserelin by iontophoresis (1993) J Control Release, 26, pp. 203-212Okabe, K., Yamaguchi, H., Kawai, Y., New iontophoretic transdermal administration of the beta-blocker metoprolol (1986) J Control Release, 4, pp. 79-85Li, S.K., Higuchi, W.I., Zhu, H., Kern, S.E., Miller, D.J., Hastings, M.S., In vitro and in vivo comparisons of constant resistance AC iontophoresis and DC iontophoresis (2003) J Control Release, 91, pp. 327-343Banga, A.K., Chien, Y.W., Iontophoretic delivery of drugs: fundamentals, developments and biomedical application (1988) J Control Rel, 7, p. 1Panzade, P., Heda, A., Puranik, P., Patni, M., Mogal, V., Enhanced Transdermal Delivery of Granisetron by Using Iontophoresis (2012) IJPR, 11, pp. 503-512Chen, L.L.H., Chien, Y.W., Transdermal iontophoretic permeation of luteinizing hormone releasing hormone: characterization of electric parameters (1996) J Control Release, 40, pp. 187-198Chien, Y.W., Siddiqui, O., Shi, W.M., Lelawongs, P., Liu, J.C., Direct current iontophoretic transdermal delivery of peptide and protein drugs (1989) J Pharm Sci, 78, pp. 376-383Hirvonen, J., Hueber, F., Guy, R.H., Current profile regulates iontophoretic delivery of amino acids across the skin (1995) J Control Release, 37, pp. 239-249Kanebako, M., Inagi, T., Takayama, K., Transdermal delivery of iondomethacin by iontophoresis (2002) Biol Pharm Bull, 25, pp. 779-782Abramowitz, D., Neoussikine, B., (1946) Treatment by Ion Transfer, p. 87. , NewYork: Grune and StrattonLeGrys, V.A., Applequist, R., Briscoe, D.R., Farrell, P., Hickstein, R., Lo, S.F., Passarell, R., Vaks, J.E., Sweat testing: sample collection and quantitative chloride analysisapproved guidelines - Third Edition (2009) Clin Lab Stand Ins, 29. , C34-A2Beauchamp, M., Lands, L.C., Sweat-Testing: A Review of Current Technical Requirements (2005) Pediatr Pulmonol, 39, pp. 507-511Chiang, C.H., Shao, C.H., Chen, J.L., Effects of pH electric current, and enzyme inhibitors on iontophoresis of delta sleep-inducing peptide (1998) Drug Dev Ind Pharm, 24, pp. 431-438Van der Geest, R., Banhof, M., Bodde, H.E., Iontophoretic delivery of apomorphine I. In-vitro optimization and validation (1997) Pharm Res, 14, pp. 1798-1803Heap, S., Guidelines for the Performance of the Sweat Test for the Investigation of Cystic Fibrosis in the UK 2nd Version. An Evidence Based Guideline (2014) R College Paediatr Child Health, 2, pp. 1-121Kalia, Y.N., Naik, A., Garrison, J., Guy, R.H., Iontophoretic drug delivery (2004) Adv Drug DelivVer, 56, pp. 619-658Barry, B.W., Drug delivery routes in skin: a novel approach (2002) Adv Drug Deliv Rev, 54, pp. S31-S40Pikal, M.J., The role of electroosmotic flow in transdermal iontophoresis (1992) Adv Drug Deliv Rev, 9, pp. 201-237Curdy, C., Kalia, Y.N., Guy, R.H., Post-iontophoresis recovery of human skin impedance in vivo (2002) Eur J Pharm Biopharm, 53, pp. 15-21Ulreich, A., Leibrecht, W., Promer, M., Kullich, W., Infiltration versus iontophoresis in case of epicondylitis. A comparative study. Physikalische Medizin Rehabilitations medizin (1996) Kurortmedizin, 6, pp. 183-185Bolfe, V.J., Ribas, S.I., Montebelo, M.I.L., Guirro, R.R.J., Comportamento da impedância elétrica dos tecidos biológicos durante a estimulação elétrica transcutânea (2007) Rev Bras Fisioter, 11, pp. 153-159Bioelectrical impedance analysis-part I: review of principles and methods (2004) ClinNutr, 23, pp. 1226-1243Nakakura, M., Kato, Y., Hayakawa, E., Kuroda, T., Effect of pulse on iontophoretic delivery of desmopressin acetate in rats (1996) Biol Pharm Bull, 19, pp. 738-740Sagi-Dolev, A.M., Prutchi, D., Nathan, R.H., Three-dimensional current density distribuition under surface stimulation electrodes (1995) Med Biol Eng Comp, 33, pp. 403-408Zhu, F., Scheditz, D., Levin, N.W., Estimation of trunk extracellular volume by bioimpedance (1998) Conf Proc IEEE Eng Med Biol Soc, 20, pp. 3104-3107Chizmadzhev, Y.A., Kuzmin, P.I., Weaver, J.C., Potts, R.O., Skin appendageal macropores as a possible pat way for electrical current (1998) J Investg Dermatol Symp Proc, 3 (2), pp. 148-152Ya-Xian, R.O., Suetake, T., Tagami, H., Number of cell layers of the stratum corneum in normal skin-relationship to the anatomical location on the body, age, sex and physical parameters (1999) Arch Dermatol Res, 291, pp. 555-559Nelson, R.M., Hayes, K.W., Currier, D.P., (1999) Clinical Electrotherapy, pp. 15-54. , 3a. ed. Stanford: Appleton & LangeLow, J., Reed, A., (2000) Electrotherapy Explained: Principles and Practice, , Oxford: Butterworth-HeinemannCameron, M.H., (1999) Physical Agents in Rehabilitation: From Research to Practice, , Philadelphia: W.B.Saunders companyKubisz, L., The influence of storage time on the temperature dependence of the dc electrical conductivity of horn kereatin (2001) Bioelectrochemistry, 53, pp. 161-16

    Fracture modelling of adhesively-bonded joints by an inverse method

    Get PDF
    Nowadays, any structure must have strength, robustness and lightness, which has increased the industrial interest and research efforts in adhesive joining, mainly in the improvement of strength and fracture properties of adhesives. Thus, in recent years, the use of adhesive joints in industrial applications has gradually grown, replacing some traditional bonding methods, since they have advantages such as reduced stress concentrations, reduced weight and cost, and ease of processing/manufacturing. In this work, the cohesive laws of three adhesives, Araldite AV138, Araldite鮮 2015 and Sikaforce� 7752, were obtained by the application of an inverse adjustment method between the numerical and experimental load-displacement curves (P-?) of Double-Cantilever Beam (DCB) tests for tensile characterization and End-Notched Flexure (ENF) tests for shear characterization. Next, these laws were validated with experimental data of single-lap joints (SLJ) and double-lap joints (DLJ), using Abaqus�. For the Araldite� AV138 and Araldite� 2015, in tension and shear, the triangular law accurately predicted the behaviour of the SLJ and DLJ. For the Sikaforce� 7752, the triangular law did not suitably fit the experimental results. Due to its ductility, the Sikaforce� 7752 could be modelled with a trapezoidal law for improved accuracy

    Erratum To: Quality Of Sweat Test (st) Based On The Proportion Of Sweat Sodium (na) And Sweat Chloride (cl) As Diagnostic Parameter Of Cystic Fibrosis: Are We On The Right Way?

    Get PDF
    During production of the original article [1] the Methods section included an incorrect sentence. The following sentence "For the analysis of variables with numerical distribution, Fisher's exact test and one-way analysis of variance were used" should be corrected as "For the analysis of variables with numerical distribution, Student's t-test and one-way analysis of variance were used". © The Author(s).12
    corecore