183 research outputs found

    Acute and Second Meal Effects of Peanuts on Glycemic Response and Appetite in Obese Women with High Type 2 Diabetes Risk: A Randomized Crossover Clinical Trial.

    Get PDF
    Nut consumption is associated with a reduced risk of type 2 diabetes mellitus (T2DM). The aim of the present study was to assess the effects of adding peanuts (whole or peanut butter) on first (0–240 min)- and second (240–490 min)-meal glucose metabolism and selected gut satiety hormone responses, appetite ratings and food intake in obese women with high T2DM risk. A group of fifteen women participated in a randomised cross-over clinical trial in which 42·5 g of whole peanuts without skins (WP), peanut butter (PB) or no peanuts (control) were added to a 75 g available carbohydrate-matched breakfast meal. Postprandial concentrations (0–490 min) of glucose, insulin, NEFA, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), cholecystokinin (CCK), appetitive sensations and food intake were assessed after breakfast treatments and a standard lunch. Postprandial NEFA incremental AUC (IAUC) (0–240 min) and glucose IAUC (240–490 min) responses were lower for the PB breakfast compared with the control breakfast. Insulin concentrations were higher at 120 and 370 min after the PB consumption than after the control consumption. Desire-to-eat ratings were lower, while PYY, GLP-1 and CCK concentrations were higher after the PB intake compared with the control intake. WP led to similar but non-significant effects. The addition of PB to breakfast moderated postprandial glucose and NEFA concentrations, enhanced gut satiety hormone secretion and reduced the desire to eat. The greater bioaccessibility of the lipid component in PB is probably responsible for the observed incremental post-ingestive responses between the nut forms. Inclusion of PB, and probably WP, to breakfast may help to moderate glucose concentrations and appetite in obese women

    Carcass characteristics and meat quality of sheep fed buffelgrass silage to replace corn silage

    Get PDF
    The aim of the study was to evaluate the carcass characteristics, proximate composition, and sensorial attributes of meat from sheep fed diets in which buffelgrass silage replaced corn silage. Thirty-two intact male crossbred Santa Inês sheep with an average live weight of 20.09 ± 2.0 kg were housed in individual stalls and allotted at random to four treatments in which corn silage was replaced by buffelgrass silage at the levels of 0 (control), 33.3%, 66.6%, and 100%. After an adaption period of 10 days, the sheep were fed for an additional 61 days. Feed was offered ad libitum and corn silage comprised 60% of the diet for the control group. Carcass characteristics, non-carcass components and meat quality were evaluated. Hot carcass yield, cold carcass yield, true carcass yield, trimmings, fat weight, and mesenteric and omental fat weight were highest for the control group (P <0.05). Loin eye area had a quadratic response (P =0.02), with the largest areas being observed in animals fed the diet containing 66.6% buffelgrass silage. Liver weight (P <0.01), luminosity of the meat (P <0.05), and cooking loss (P <0.05) likewise had nonlinear responses to the concentration of buffelgrass silage in the diet. The treatments did not have significant negative influence on the nutritional and organoleptic characteristics of the meat

    Cholinergic modulation of striatal microcircuits

    Get PDF
    The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre- and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine-mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson\u27s, Huntington\u27s, and Tourette\u27s pathologies and dystonia is also included

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    corecore