20,881 research outputs found

    Five-Dimensional QED, Muon Pair Production and Correction to the Coulomb Potential

    Full text link
    We consider QED in five dimensions in a configuration where matter is localized on a 3-brane while foton propagates in the bulk. The idea is to investigate the effects of the Kaluza-Klein modes of the photon in the relativistic regime, but in low energy, and in the nonrelativistic regime. In the relativistic regime, we calculate the cross section for the reaction e++e−→Ό++Ό−e^+ + e^- \to \mu^+ + \mu^-. We compare our theoretical result with a precise measurement of this cross section at s=57.77\sqrt{s}=57.77 GeV. As result, we extract a lower bound on the size of the extra dimension. In the nonrelativistic regime, we derive the contribution for the Coulomb potential due to the whole tower of the Kaluza-Klein excited modes of the photon. We use the modified potential to calculate the Rutherford scattering differential cross section.Comment: minor changes, three new refs. added, to appear in IJMP

    Scaling laws and universality in the choice of election candidates

    Full text link
    Nowadays there is an increasing interest of physicists in finding regularities related to social phenomena. This interest is clearly motivated by applications that a statistical mechanical description of the human behavior may have in our society. By using this framework, we address this work to cover an open question related to elections: the choice of elections candidates (candidature process). Our analysis reveals that, apart from the social motivations, this system displays features of traditional out-of-equilibrium physical phenomena such as scale-free statistics and universality. Basically, we found a non-linear (power law) mean correspondence between the number of candidates and the size of the electorate (number of voters), and also that this choice has a multiplicative underlying process (lognormal behavior). The universality of our findings is supported by data from 16 elections from 5 countries. In addition, we show that aspects of network scale-free can be connected to this universal behavior.Comment: Accepted for publication in EP

    Group theory for structural analysis and lattice vibrations in phosphorene systems

    Get PDF
    Group theory analysis for two-dimensional elemental systems related to phosphorene is presented, including (i) graphene, silicene, germanene and stanene, (ii) dependence on the number of layers and (iii) two stacking arrangements. Departing from the most symmetric D6h1D_{6h}^{1} graphene space group, the structures are found to have a group-subgroup relation, and analysis of the irreducible representations of their lattice vibrations makes it possible to distinguish between the different allotropes. The analysis can be used to study the effect of strain, to understand structural phase transitions, to characterize the number of layers, crystallographic orientation and nonlinear phenomena.Comment: 24 pages, 3 figure

    Dynamical analysis of the cluster pair: A3407 + A3408

    Full text link
    We carried out a dynamical study of the galaxy cluster pair A3407 \& A3408 based on a spectroscopic survey obtained with the 4 meter Blanco telescope at the CTIO, plus 6dF data, and ROSAT All-Sky-Survey. The sample consists of 122 member galaxies brighter than mR=20m_R=20. Our main goal is to probe the galaxy dynamics in this field and verify if the sample constitutes a single galaxy system or corresponds to an ongoing merging process. Statistical tests were applied to clusters members showing that both the composite system A3407 + A3408 as well as each individual cluster have Gaussian velocity distribution. A velocity gradient of ∌847±114\sim 847\pm 114 km  s−1\rm km\;s^{-1} was identified around the principal axis of the projected distribution of galaxies, indicating that the global field may be rotating. Applying the KMM algorithm to the distribution of galaxies we found that the solution with two clusters is better than the single unit solution at the 99\% c.l. This is consistent with the X-ray distribution around this field, which shows no common X-ray halo involving A3407 and A3408. We also estimated virial masses and applied a two-body model to probe the dynamics of the pair. The more likely scenario is that in which the pair is gravitationally bound and probably experiences a collapse phase, with the cluster cores crossing in less than ∌\sim1 h−1h^{-1} Gyr, a pre-merger scenario. The complex X-ray morphology, the gas temperature, and some signs of galaxy evolution in A3408 suggests a post-merger scenario, with cores having crossed each other ∌1.65h−1\sim 1.65 h^{-1}Gyr ago, as an alternative solution.Comment: 17 pages, 12 figures, submitted to MNRAS, accepted 2016 May 9. Received 2016 May 9; in original form 2016 April 1

    Matching LTB and FRW spacetimes through a null hypersurface

    Get PDF
    Matching of a LTB metric representing dust matter to a background FRW universe across a null hypersurface is studied. In general, an unrestricted matching is possible only if the background FRW is flat or open. There is in general no gravitational impulsive wave present on the null hypersurface which is shear-free and expanding. Special cases of the vanishing pressure or energy density on the hypersurface is discussed. In the case of vanishing energy momentum tensor of the null hypersurface, i.e. in the case of a null boundary, it turns out that all possible definitions of the Hubble parameter on the null hypersurface, being those of LTB or that of FRW, are equivalent, and that a flat FRW can only be joined smoothly to a flat LTB.Comment: 9 page
    • 

    corecore