16,787 research outputs found

    INJECTABLE HYBRID SYSTEM FOR STRONTIUM LOCAL DELIVERY TO PROMOTE BONE REGENERATION

    Get PDF
    In bone tissue regeneration strategies, injectable bone substitutes are very attractive since they can be applied with minimally invasive surgical procedures and can perfectly fill irregular defects created in cases of trauma, infection or tumor resection. These materials must combine adequate mechanical properties with the ability to induce new bone formation. Incorporating strontium (Sr) in bone substitute biomaterials may be a strategy to achieve high Sr concentrations, not in a systemic but in a local environment, taking advantage of the osteoanabolic and anti-osteoclastic activity of Sr, for the enhancement of new bone formation. In this context, the aim of the present work was to evaluate the response of a Sr-hybrid injectable system for bone regeneration, designed by our group, consisting of hydroxyapatite microspheres doped with Sr and an alginate vehicle crosslinked in situ with Sr, in an in vivo scenario. Two different animal models were used, rat (Wistar) and sheep (Merino Branco) critical sized bone defect. Non Sr-doped similar materials (Ca-hybrid) or empty defects were used as control. Sr-hybrid system led to an increased bone formation in both center and periphery of a rat critical sized defect compared to a non Sr–doped similar system, where new bone formation was restricted to the periphery. Moreover newly formed bone was identified as early as one week after its implantation in a sheep model. After eight weeks, the bone surrounded the microspheres, both in the periphery and in the center of the defect. Most importantly, the hybrid system provided a scaffold for cell migration and tissue ingrowth and offered structural support, as observed in both models. The effective improvement of local bone formation suggests that this might be a promising approach for bone regeneration, especially in osteoporotic conditions

    Enhanced Optical Dichroism of Graphene Nanoribbons

    Get PDF
    The optical conductivity of graphene nanoribbons is analytical and exactly derived. It is shown that the absence of translation invariance along the transverse direction allows considerable intra-band absorption in a narrow frequency window that varies with the ribbon width, and lies in the THz range domain for ribbons 10-100nm wide. In this spectral region the absorption anisotropy can be as high as two orders of magnitude, which renders the medium strongly dichroic, and allows for a very high degree of polarization (up to ~85) with just a single layer of graphene. The effect is resilient to level broadening of the ribbon spectrum potentially induced by disorder. Using a cavity for impedance enhancement, or a stack of few layer nanoribbons, these values can reach almost 100%. This opens a potential prospect of employing graphene ribbon structures as efficient polarizers in the far IR and THz frequencies.Comment: Revised version. 10 pages, 7 figure

    Optical Properties of Strained Graphene

    Full text link
    The optical conductivity of graphene strained uniaxially is studied within the Kubo-Greenwood formalism. Focusing on inter-band absorption, we analyze and quantify the breakdown of universal transparency in the visible region of the spectrum, and analytically characterize the transparency as a function of strain and polarization. Measuring transmittance as a function of incident polarization directly reflects the magnitude and direction of strain. Moreover, direction-dependent selection rules permit identification of the lattice orientation by monitoring the van-Hove transitions. These photoelastic effects in graphene can be explored towards atomically thin, broadband optical elements

    Inducing energy gaps in graphene monolayer and bilayer

    Full text link
    In this paper we propose a mechanism for the induction of energy gaps in the spectrum of graphene and its bilayer, when both these materials are covered with water and ammonia molecules. The energy gaps obtained are within the range 20-30 meV, values compatible to those found in experimental studies of graphene bilayer. We further show that the binding energies are large enough for the adsorption of the molecules to be maintained even at room temperature

    Entanglement dynamics via coherent-state propagators

    Full text link
    The dynamical generation of entanglement in closed bipartite systems is investigated in the semiclassical regime. We consider a model of two particles, initially prepared in a product of coherent states, evolving in time according to a generic Hamiltonian, and derive a formula for the linear entropy of the reduced density matrix using the semiclassical propagator in the coherent-state representation. The formula is explicitly written in terms of quantities that define the stability of classical trajectories of the underlying classical system. The formalism is then applied to the problem of two nonlinearly coupled harmonic oscillators and the result is shown to be in remarkable agreement with the exact quantum measure of entanglement in the short-time regime. An important byproduct of our approach is a unified semiclassical formula which contemplates both the coherent-state propagator and its complex conjugate.Comment: 10 page
    corecore