7,040 research outputs found

    Scanning afocal laser velocimeter projection lens system

    Get PDF
    A method and apparatus for projecting and focusing parallel laser light beams from a laser doppler velocimeter on a target area are described. The system includes three lenses. Two lenses work together as a fixed afocal lens combination. The third lens is a movable scanning lens. Parallel laser beams travel from the velocimeter through the scanning lens and through the afocal lens combination and converge, i.e., are focused, somewhere beyond. Moving the scanning lens relative to the fixed afocal combination results in a scanning of the focus area along the afocal combination's optical axis

    Optical scanner

    Get PDF
    An optical scanner that sequentially focuses optical energy (light) at selected points in space is described. The essential component is a scanning wheel including several glass windows with each window having a different thickness. Due to this difference in thickness, the displacement of the emerging light from the incident light is different for each window. The scanner transmits optical energy to a point in space while at the same time receiving any optical energy generated at that point and then moves on to the next selected point and repeats this transmit and receive operation. It fills the need for a system that permits a laser velocimeter to rapidly scan across a constantly changing flow field in an aerodynamic test facility

    Flow visualization in the Langley 0.3-meter Transonic Cryogenic Tunnel and preliminary plans for the National Transonic Facility

    Get PDF
    Design problems associated with the integration of flow visualization in cryogenic facilities are discussed. The possible effects from the cryogenic environment (i.e., window distortion due to thermal contraction both in the mounts and in the window material itself and turbulence in the flow due to injected LN2) are examined. The flow visualization techniques studied are schlieren, shadowgraph, moire deflectometry, and holographic interferometry. The test beds for this work are a Langley in-house cryogenic test chamber and the 0.3-Meter Transonic Cryogenic Tunnel

    A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions

    Get PDF
    A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations
    corecore