15 research outputs found

    Eletrococleografia extratimpânica na neuropatia/dessincronia auditiva Extratympanic electrocochleography in the diagnosis of auditory neuropathy/auditory dyssynchrony

    Get PDF
    O potencial evocado auditivo de tronco encefálico (PEATE) vem sendo amplamente utilizado como método para avaliação da função coclear em indivíduos com diagnóstico de neuropatia/dessincronia auditiva (NA/DA). Na ausência das emissões otoacústicas, muitos casos de NA/DA foram diagnosticados pela presença do microfonismo coclear (MC) identificado no PEATE. OBJETIVO: Demonstrar a aplicabilidade clínica da eletrococleografia extratimpânica (Ecog-ET) no diagnóstico diferencial da NA/DA quando comparada ao PEATE. MATERIAL E MÉTODO: Uma criança com 4 anos de idade, com diagnóstico de NA/DA atendida no Centro de Pesquisas Audiológicas realizou a Ecog-ET com tone burst de 2000Hz nas polaridades de rarefação e condensação. RESULTADOS: Ilustrou-se o registro da Ecog-ET. Com a utilização de protocolo apropriado, o MC pode ser evidenciado e confirmado na Ecog, com qualidade de registro superior ao obtido no PEATE. CONCLUSÃO: A Ecog-ET permitiu uma análise mais detalhada do MC quando comparada ao PEATE tendo, portanto aplicabilidade clínica na investigação da função coclear na NA/DA.<br>The brainstem auditory evoked potential (BAEP) is being extensively used as a method for the evaluation of cochlear function in individuals with diagnosis of auditory neuropathy/auditory dyssynchrony (AN/AD). In the absence of otoacoustic emissions, many cases of AN/AD have been diagnosed by the presence of CM identified in the BAEP. AIM: to demonstrate the clinical applicability of extratympanic electrocochleography (ET-Ecochg) in the differential diagnosis of AN/AD compared to the BAEP. METHOD: a 4-year-old child with a diagnosis of AN/AD seen at the Audiological Research Center was submitted to ET-Ecochg with a 2000 Hz tone burst in rarefaction and condensation polarities. RESULTS: the ET-Ecochg exam was illustrated. Using an appropriate protocol, it was possible to demonstrate CM and to confirm it in the Ecochg, with a recording quality superior to that obtained in the BAEP. CONCLUSION: ET-Ecochg permitted a more detailed analysis of CM compared to the BAEP, thus showing clinical applicability for the investigation of cochlear function in AN/AD

    Abnormal Cochlear Potentials from Deaf Patients with Mutations in the Otoferlin Gene

    No full text
    Otoferlin is involved in neurotransmitter release at the synapse between inner hair cells (IHCs) and auditory nerve fibres, and mutations in the OTOF gene result in severe to profound hearing loss. Abnormal sound-evoked cochlear potentials were recorded with transtympanic electrocochleography from four children with otoferlin (OTOF) mutations to evaluate physiological effects in humans of abnormal neurotransmitter release from IHCs. The subjects were profoundly deaf with absent auditory brainstem responses and preserved otoacoustic emissions consistent with auditory neuropathy. Two children were compound heterozygotes for mutations c.2732_2735dupAGCT and p.Ala964Glu; one subject was homozygous for mutation p.Phe1795Cys, and one was compound heterozygote for two novel mutations c.1609delG in exon 16 and c.1966delC in exon 18. Cochlear potentials evoked by clicks from 60 to 120 dB peak equivalent sound pressure level were compared to recordings obtained from 16 normally hearing children. Cochlear microphonic (CM) was recorded with normal amplitudes from all but one ear. After cancelling CM, cochlear potentials were of negative polarity with reduced amplitude and prolonged duration compared to controls. These cochlear potentials were recorded as low as 50–90 dB below behavioural thresholds in contrast to the close correlation in controls between cochlear potentials and behavioural threshold. Summating potential was identified in five out of eight ears with normal latency whilst auditory nerve compound action potentials were either absent or of low amplitude. Stimulation at high rates reduced amplitude and duration of the prolonged potentials, consistent with neural generation. This study suggests that mechano-electrical transduction and cochlear amplification are normal in patients with OTOF mutations. The low-amplitude prolonged negative potentials are consistent with decreased neurotransmitter release resulting in abnormal dendritic activation and impairment of auditory nerve firing
    corecore