42 research outputs found

    Comparison of the solophenyl-red polarization method and the immunohistochemical analysis for collagen type III

    Get PDF
    In the present study, we have compared the staining pattern of the Solophenyl-Red 3 BL-method for the visualization of collagen type III with the immunohistochemical staining in serial sections from 7 skin wounds (wound age 3 days up to 4 weeks) to elucidate the specifity of the histochemical staining method. Large amounts of collagen type III were clearly detectable in the investigated wounds using the immunohistochemical technique. In the sections stained with Solophenyl-Red, however, only 3 out of 7 skin lesions showed a significant positive red staining at the wound margin or in the granulation tissue, while the adjacent normal connective tissue revealed a typical intensive staining. Using polarization microscopy no characteristic bright green fibrils, as reported for collagen type 111, could be seen in the wound areas without positive Solophenyl-Red staining. Since the localization of collagen type III detected by immunohistochemistry and the presumed distribution of this collagen type by the Solophenyl-Red method was not identical, the histochemical polarization method has to be regarded as non-specific for visualization of this collagen type

    Dissecting the First Transcriptional Divergence During Human Embryonic Development

    Get PDF
    The trophoblast cell lineage is specified early at the blastocyst stage, leading to the emergence of the trophectoderm and the pluripotent cells of the inner cell mass. Using a double mRNA amplification technique and a comparison with transcriptome data on pluripotent stem cells, placenta, germinal and adult tissues, we report here some essential molecular features of the human mural trophectoderm. In addition to genes known for their role in placenta (CGA, PGF, ALPPL2 and ABCG2), human trophectoderm also strongly expressed Laminins, such as LAMA1, and the GAGE Cancer/Testis genes. The very high level of ABCG2 expression in trophectoderm, 7.9-fold higher than in placenta, suggests a major role of this gene in shielding the very early embryo from xenobiotics. Several genes, including CCKBR and DNMT3L, were specifically up-regulated only in trophectoderm, indicating that the trophoblast cell lineage shares with the germinal lineage a transient burst of DNMT3L expression. A trophectoderm core transcriptional regulatory circuitry formed by 13 tightly interconnected transcription factors (CEBPA, GATA2, GATA3, GCM1, KLF5, MAFK, MSX2, MXD1, PPARD, PPARG, PPP1R13L, TFAP2C and TP63), was found to be induced in trophectoderm and maintained in placenta. The induction of this network could be recapitulated in an in vitro trophoblast differentiation model
    corecore