21 research outputs found

    The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib

    Get PDF
    The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GRNesCre), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress

    Rac1 and Rac3 GTPases Regulate the Development of Hilar Mossy Cells by Affecting the Migration of Their Precursors to the Hilus

    Get PDF
    We have previously shown that double deletion of the genes for Rac1 and Rac3 GTPases during neuronal development affects late developmental events that perturb the circuitry of the hippocampus, with ensuing epileptic phenotype. These effects include a defect in mossy cells, the major class of excitatory neurons of the hilus. Here, we have addressed the mechanisms that affect the loss of hilar mossy cells in the dorsal hippocampus of mice depleted of the two Rac GTPases. Quantification showed that the loss of mossy cells was evident already at postnatal day 8, soon after these cells become identifiable by a specific marker in the dorsal hilus. Comparative analysis of the hilar region from control and double mutant mice revealed that synaptogenesis was affected in the double mutants, with strongly reduced presynaptic input from dentate granule cells. We found that apoptosis was equally low in the hippocampus of both control and double knockout mice. Labelling with bromodeoxyuridine at embryonic day 12.5 showed no evident difference in the proliferation of neuronal precursors in the hippocampal primordium, while differences in the number of bromodeoxyuridine-labelled cells in the developing hilus revealed a defect in the migration of immature, developing mossy cells in the brain of double knockout mice. Overall, our data show that Rac1 and Rac3 GTPases participate in the normal development of hilar mossy cells, and indicate that they are involved in the regulation of the migration of the mossy cell precursor by preventing their arrival to the dorsal hilus

    Female Audit Partners and Extended Audit Reporting: UK Evidence

    Get PDF
    This study investigates whether audit partner gender is associated with the extent of auditor disclosure and the communication style regarding risks of material misstatements that are classified as key audit matters (KAMs). Using a sample of UK firms during the 2013–2017 period, our results suggest that female audit partners are more likely than male audit partners to disclose more KAMs with more details after controlling for both client and audit firm attributes. Furthermore, female audit partners are found to use a less optimistic tone and provide less readable audit reports, compared to their male counterparts, suggesting that behavioural variances between female and male audit partners may have significant implications on their writing style. Therefore, this study offers new insights on the role of audit partner gender in extended audit reporting. Our findings have important implications for audit firms, investors, policymakers and governments in relation to the development, implementation and enforcement of gender diversity

    HtrA1-dependent proteolysis of TGF-β controls both neuronal maturation and developmental survival

    No full text
    Transforming growth factor-β (TGF-β) signalling controls a number of cerebral functions and dysfunctions including synaptogenesis, amyloid-β accumulation, apoptosis and excitotoxicity. Using cultured cortical neurons prepared from either wild type or transgenic mice overexpressing a TGF-β-responsive luciferase reporter gene (SBE-Luc), we demonstrated a progressive loss of TGF-β signalling during neuronal maturation and survival. Moreover, we showed that neurons exhibit increasing amounts of the serine protease HtrA1 (high temperature responsive antigen 1) and corresponding cleavage products during both in vitro neuronal maturation and brain development. In parallel of its ability to promote degradation of TGF-β1, we demonstrated that blockage of the proteolytic activity of HtrA1 leads to a restoration of TGF-β signalling, subsequent overexpression of the serpin type -1 plasminogen activator inhibitor (PAI-1) and neuronal death. Altogether, we propose that the balance between HtrA1 and TGF-β could be one of the critical events controlling both neuronal maturation and developmental survival
    corecore