197 research outputs found

    Racial Group Membership Is Associated to Gaze-Mediated Orienting in Italy

    Get PDF
    Viewing a face with averted gaze results in a spatial shift of attention in the corresponding direction, a phenomenon defined as gaze-mediated orienting. In the present paper, we investigated whether this effect is influenced by social factors. Across three experiments, White and Black participants were presented with faces of White and Black individuals. A modified spatial cueing paradigm was used in which a peripheral target stimulus requiring a discrimination response was preceded by a noninformative gaze cue. Results showed that Black participants shifted attention to the averted gaze of both ingroup and outgroup faces, whereas White participants selectively shifted attention only in response to individuals of their same group. Interestingly, the modulatory effect of social factors was context-dependent and emerged only when group membership was situationally salient to participants. It was hypothesized that differences in the relative social status of the two groups might account for the observed asymmetry between White and Black participants. A final experiment ruled out an alternative explanation based on differences in perceptual familiarity with the face stimuli. Overall, these findings strengthen the idea that gaze-mediated orienting is a socially-connoted phenomenon

    Effects of Vegetation, Corridor Width and Regional Land Use on Early Successional Birds on Powerline Corridors

    Get PDF
    Powerline rights-of-way (ROWs) often provide habitat for early successional bird species that have suffered long-term population declines in eastern North America. To determine how the abundance of shrubland birds varies with habitat within ROW corridors and with land use patterns surrounding corridors, we ran Poisson regression models on data from 93 plots on ROWs and compared regression coefficients. We also determined nest success rates on a 1-km stretch of ROW. Seven species of shrubland birds were common in powerline corridors. However, the nest success rates for prairie warbler (Dendroica discolor) and field sparrow (Spizella pusilla) were <21%, which is too low to compensate for estimated annual mortality. Some shrubland bird species were more abundant on narrower ROWs or at sites with lower vegetation or particular types of vegetation, indicating that vegetation management could be refined to favor species of high conservation priority. Also, several species were more abundant in ROWs traversing unfragmented forest than those near residential areas or farmland, indicating that corridors in heavily forested regions may provide better habitat for these species. In the area where we monitored nests, brood parasitism by brown-headed cowbirds (Molothrus ater) occurred more frequently close to a residential area. Although ROWs support dense populations of shrubland birds, those in more heavily developed landscapes may constitute sink habitat. ROWs in extensive forests may contribute more to sustaining populations of early successional birds, and thus may be the best targets for habitat management

    A Novel Peptide ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses

    Get PDF
    BACKGROUND: Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.9% in avian isolates. Here, we describe a peptide ELISA to detect antibodies to H5N1 virus by using synthetic peptide that comprises the amino acid sequence of this highly conserved and antigenic epitope as the capture antigen. The sensitivity and specificity of the peptide ELISA were evaluated using experimental chicken antisera to H5N1 viruses from divergent clades and other subtype influenza viruses, as well as human serum samples from patients infected with H5N1 or seasonal influenza viruses. The peptide ELISA results were compared with hemagglutinin inhibition (HI), and immunofluorescence assay and immunodot blot that utilize recombinant HA1 as the capture antigen. The peptide ELISA detected antibodies to H5N1 in immunized animals or convalescent human sera whereas some degree of cross-reactivity was observed in HI, immunofluorescence assay and immunodot blot. Antibodies to other influenza subtypes tested negative in the peptide-ELISA. CONCLUSION/SIGNIFICANCE: The peptide-ELISA based on the highly conserved and antigenic H5 epitope (CNTKCQTP) provides sensitive and highly specific detection of antibodies to H5N1 influenza viruses. This study highlighted the use of synthetic peptide as a capture antigen in rapid detection of antibodies to H5N1 in human and animal sera that is robust, simple and cost effective and is particularly beneficial for developing countries and rural areas

    Mimotope ELISA for Detection of Broad Spectrum Antibody against Avian H5N1 Influenza Virus

    Get PDF
    Science and Technology Foundation of Fujian Province [2009YZ0002]; National Natural Science Foundation of China [30901077]; National High Technology Research and Development Program [2010AA022801]Background: We have raised a panel of broad spectrum neutralizing monoclonal antibodies against the highly pathogenic H5N1 avian influenza virus, which neutralize the infectivity of, and afford protection against infection by, most of the major genetic groups of the virus evolved since 1997. Peptide mimics reactive with one of these broad spectrum H5N1 neutralizing antibodies, 8H5, were identified from random phage display libraries. Method: The amino acid residues of the most reactive 12mer peptide, p125 (DTPLTTAALRLV), were randomly substituted to improve its mimicry of the natural 8H5 epitope. Result: 133 reactive peptides with unique amino acid sequences were identified from 5 sub-libraries of p125. Four residues (2,4,5.9) of the parental peptide were preserved among all the derived peptides and probably essential for 8H5 binding. These are interspersed among four other residues (1,3,8,10), which exhibit restricted substitution and probably could contribute to binding, and another four (6,7,11,12) which could be randomly substituted and probably are not essential for binding. One peptide, V-1b, derived by substituting 5 of the latter residues is the most reactive and has a binding constant of 3.16x10(-9) M, which is 38 fold higher than the affinity of the parental p125. Immunoassay produced with this peptide is specifically reactive with 8H5 but not also the other related broad spectrum H5N1 avian influenza virus neutralizing antibodies. Serum samples from 29 chickens infected with H5N1 avian influenza virus gave a positive result by this assay and those from 12 uninfected animals gave a negative test result. Conclusion: The immunoassay produced with the 12 mer peptide, V1-b, is specific for the natural 8H5 epitope and can be used for detection of antibody against the broad spectrum neutralization site of H5N1 avian influenza virus

    The role of community and population ecology in applying mycorrhizal fungi for improved food security.

    Get PDF
    The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner

    H5N1 Whole-Virus Vaccine Induces Neutralizing Antibodies in Humans Which Are Protective in a Mouse Passive Transfer Model

    Get PDF
    BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines

    On the phylogeny of Mustelidae subfamilies: analysis of seventeen nuclear non-coding loci and mitochondrial complete genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mustelidae, as the largest and most-diverse family of order Carnivora, comprises eight subfamilies. Phylogenetic relationships among these Mustelidae subfamilies remain argumentative subjects in recent years. One of the main reasons is that the mustelids represent a typical example of rapid evolutionary radiation and recent speciation event. Prior investigation has been concentrated on the application of different mitochondrial (mt) sequence and nuclear protein-coding data, herein we employ 17 nuclear non-coding loci (>15 kb), in conjunction with mt complete genome data (>16 kb), to clarify these enigmatic problems.</p> <p>Results</p> <p>The combined nuclear intron and mt genome analyses both robustly support that Taxidiinae diverged first, followed by Melinae. Lutrinae and Mustelinae are grouped together in all analyses with strong supports. The position of Helictidinae, however, is enigmatic because the mt genome analysis places it to the clade uniting Lutrinae and Mustelinae, whereas the nuclear intron analysis favores a novel view supporting a closer relationship of Helictidinae to Martinae. This finding emphasizes a need to add more data and include more taxa to resolve this problem. In addition, the molecular dating provides insights into the time scale of the origin and diversification of the Mustelidae subfamilies. Finally, the phylogenetic performances and limits of nuclear introns and mt genes are discussed in the context of Mustelidae phylogeny.</p> <p>Conclusion</p> <p>Our study not only brings new perspectives on the previously obscured phylogenetic relationships among Mustelidae subfamilies, but also provides another example demonstrating the effectiveness of nuclear non-coding loci for reconstructing evolutionary histories in a group that has undergone rapid bursts of speciation.</p
    corecore