24 research outputs found

    A catalytic alloy approach for graphene on epitaxial SiC on silicon wafers

    Full text link
    © Materials Research Society 2015. We introduce a novel approach to the synthesis of high-quality and highly uniform few-layer graphene on silicon wafers, based on solid source growth from epitaxial 3C-SiC films. Using a Ni/Cu catalytic alloy, we obtain a transfer-free bilayer graphene directly on Si(100) wafers, at temperatures potentially compatible with conventional semiconductor processing. The graphene covers uniformly a 2″ silicon wafer, with a Raman ID/IG band ratio as low as 0.5, indicative of a low defectivity material. The sheet resistance of the graphene is as low as 25 Ω/square, and its adhesion energy to the underlying substrate is substantially higher than transferred graphene. This work opens the avenue for the true wafer-level fabrication of microdevices comprising graphene functional layers. Specifically, we suggest that exceptional conduction qualifies this graphene as a metal replacement for MEMS and advanced on-chip interconnects with ultimate scalability

    Threshold intensity factors as lower boundaries for crack propagation in ceramics

    Get PDF
    BACKGROUND: Slow crack growth can be described in a v (crack velocity) versus K(I )(stress intensity factor) diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip) induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime. METHODS: We utilize the Irwin K-field displacement relation to deduce crack tip stress intensity factors from the near crack tip profile. Cracks are initiated by indentation impressions. The threshold stress intensity factor is determined as the time limit of the tip stress intensity when the residual stresses have (nearly) disappeared. RESULTS: We determined the threshold stress intensity factors for most of the all ceramic materials presently important for dental restorations in Europe. Of special significance is the finding that alumina ceramic has a threshold limit nearly identical with that of zirconia. CONCLUSION: The intention of the present paper is to stress the point that the threshold stress intensity factor represents a more intrinsic property for a given ceramic material than the widely used toughness (bend strength or fracture toughness), which refers only to fast crack growth. Considering two ceramics with identical threshold limits, although with different critical stress intensity limits, means that both ceramics have identical starting points for slow crack growth. Fast catastrophic crack growth leading to spontaneous fatigue, however, is different. This growth starts later in those ceramic materials that have larger critical stress intensity factors

    Cyclic Fatigue

    No full text

    Highly compressed nano-layers in epitaxial silicon carbide membranes for MEMs sensors

    Full text link
    Through a novel methodology for evaluating layer-by-layer residual stresses in epitaxial silicon carbide films with resolution down to 10 nm, we indicate the existence of a highly compressed interfacial nano-layer between the films and their silicon substrates. This layer is consistently present underneath all types of silicon carbide films examined herein, regardless of the extent of residual tensile stress measured in the full thickness of the films, which varies from 300 MPa up to 1300 MPa. We link this nano-layer to the carbonisation step of the film growth process and we discuss in detail the implications in terms of fracture behaviour by bulge testing of micro-machined membranes. © 2014 IEEE

    Evidence of a highly compressed nanolayer at the epitaxial silicon carbide interface with silicon

    Full text link
    Through a novel methodology for evaluating layer-by-layer residual stresses in epitaxial silicon carbide films with resolution down to 10 nm, we indicate the existence of a highly compressed interfacial nanolayer between the films and their silicon substrates. This layer is consistently present underneath all types of silicon carbide films examined herein, regardless of the extent of residual tensile stress measured in the full thickness of the films, which varies from 300 up to 1300 MPa. We link this nanolayer to the carbonization step of the film growth process and we discuss in detail the implications in terms of fracture behaviour by bulge testing of micromachined membranes

    High-Throughput Open-Air Plasma Activation of Metal-Oxide Thin Films with Low Thermal Budget

    No full text
    Sputter-processed oxide films are typically annealed at high temperature (activation process) to achieve stable electrical characteristics through the formation of strong metal-oxide chemical bonds. For instance, indium-gallium-zinc oxide (IGZO) films typically need a thermal treatment at 300 °C for ≥1 h as an activation process. We propose an open-air plasma treatment (OPT) to rapidly and effectively activate sputter-processed IGZO films. The OPT effectively induces metal-oxide chemical bonds in IGZO films at temperatures as low as 240 °C, with a dwell time on the order of a second. Furthermore, by controlling the plasma-processing conditions (scan speed, distance a between plasma nozzle and samples, and gas flow rate), the electrical characteristics and the microstructure of the IGZO films can be easily tuned. Finally, OPT can be utilized to implement a selective activation process. Plasma-treated IGZO thin-film transistors (TFTs) exhibit comparable electrical characteristics to those of conventionally thermal treated IGZO TFTs. Through in-depth optical, chemical, and physical characterizations, we confirm that OPT simultaneously dissociates weak chemical bonds by UV radiation and ion bombardment and re-establishes the metal-oxide network by radical reaction and OPT-induced heat

    Defects in ProTaper S1 instruments after clinical use: Fractographic examination

    No full text
    Aim: To investigate the mode of failure of a brand of nickel-titanium instruments separated during clinical use, by detailed examination of the fracture surface. Methodology: A total of 122 ProTaper S1 instruments were discarded from an endodontic clinic at a stomatological school in China over a period of 17 months; 28 had fractured. These fractured instruments were ultrasonically cleaned, autoclaved and then examined under a scanning electron microscope. From the lateral view the fracture was classified into 'torsional' or 'flexural'. The specimens were then re-mounted and the presence of characteristics of shear failure and fatigue striations was recorded under high-power view of the fracture surface. The difference in the mean lengths of fractured segment between the shear and fatigue groups was compared using Student's t-test. Results: Twenty-seven separated instruments were available for analysis. Under low-power magnification, only two fell into the category of 'torsional' failure when examined laterally; the others appeared to be 'flexural'. Close examination of the fracture surface revealed the presence of fatigue striations in 18 specimens. Nine instruments (including the two putative 'torsional' failures above) fell into the shear fracture group, in which fatigue striations were absent or characteristics of shear failure of the material were found. The mean length of fractured segments resulting from fatigue failure (4.3 ± 1.9 mm) was significantly greater than that for shear failure (2.5 ± 0.8 mm) (P < 0.001, two-sample t-test). Conclusions: Examination of the fracture surface at high magnification is essential to reveal features that may indicate the possible origin of cracks and the mode of material failure. Macroscopic or lateral examination of separated instruments would fail to reveal the true mechanism of failure. Fatigue seems to be an important reason for the separation of rotary instruments during clinical use. © 2005 International Endodontic Journal.link_to_subscribed_fulltex
    corecore