28 research outputs found

    Mapping Seabed Variability Using Combined Echosounder and XBPs for Sonar Performance Prediction

    No full text

    Grain size dependency in the occurrence of sand waves

    Get PDF
    Sandy shallow seas, like the North Sea, are very dynamic. Several morphological features are present on the bed, from small ripples to sand waves and large tidal sandbanks. The larger patterns induce significant depth variations that have an impact on human activities taking place in this area. Therefore, it is important to know where these large-scale features occur, what their natural behaviour is and how they interact with human activities. Here, we extend earlier research that compares the results of an idealized model of large-scale seabed patterns with data of seabed patterns in the North Sea. The idealized model is extended with a grain size dependency. The adaptations lead to more accurate predictions of the occurrence of large-scale bed forms in the North Sea. Therefore, grain size dependency and, in particular, critical shear stress are important to explain the occurrence of sand waves and sandbanks in the North Sea

    Sidescan Sonar

    No full text
    Sidescan sonar allows obtaining an acoustic image of the seafloor at high resolution, wide swath and relatively low cost. For that purpose the backscattered signal of an acoustic pulse sent out sideways from an instrument carrier is registered. At low incident angles small-scale relief is well imaged and the length of shadows allows calculation of the height of seafloor features but sidescan sonar is particularly useful in mapping compositional differences of the seafloor. Sidescan sonar images are, however, mostly uncalibrated and need some form of ground-truthing for meaningful geological interpretation. Interferometric sidescan sonar systems now also provide bathymetric information together with backscatter strength
    corecore