9 research outputs found

    Landau-Zener transitions in a semiconductor quantum dot

    Get PDF
    We study the transitions between neighboring energy levels in a quasi-one-dimensional semiconductor quantum dot with two interacting electrons in it, when it is subject to a linearly time-dependent electric field. We analyze the applicability of simple two-level Landau-Zener model to describe the evolution of the probability amplitudes in this realistic system. We show that the Landau-Zener model works very well when it is viewed in the adibatic basis, but it is not as robust in the diabatic basis.Comment: 7 pages, 7 figures. Submitted to Special Issue "Quantum Control of Matter and Light" of Journal of Modern Physic

    Exactly solvable Wadati potentials in the PT-symmetric Gross-Pitaevskii equation

    Full text link
    This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: V=W2+iWxV=-W^2+iW_x. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified by equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.Comment: To appear in Proceedings of the 15 Conference on Pseudo-Hermitian Hamiltonians in Quantum Physics, May 18-23 2015, Palermo, Italy (Springer Proceedings in Physics, 2016
    corecore