227 research outputs found

    Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer

    Get PDF
    Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes[superscript 3]. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.Susan G. Komen Breast Cancer Foundation (Fellowship)Life Sciences Research Foundation (Fellowship)W. M. Keck FoundationDavid H. Koch Cancer Research FundAlexander and Margaret Stewart TrustNational Institutes of Health (U.S.) (Grant CA103866

    Multiple QTL underlie milk phenotypes at the CSF2RB locus.

    Get PDF
    Background Over many years, artificial selection has substantially improved milk production by cows. However, the genes that underlie milk production quantitative trait loci (QTL) remain relatively poorly characterised. Here, we investigate a previously reported QTL located at the CSF2RB locus on chromosome 5, for several milk production phenotypes, to better understand its underlying genetic and molecular causes. Results Using a population of 29,350 taurine dairy cows, we conducted association analyses for milk yield and composition traits, and identified highly significant QTL for milk yield, milk fat concentration, and milk protein concentration. Strikingly, protein concentration and milk yield appear to show co-located yet genetically distinct QTL. To attempt to understand the molecular mechanisms that might be mediating these effects, gene expression data were used to investigate eQTL for 11 genes in the broader interval. This analysis highlighted genetic impacts on CSF2RB and NCF4 expression that share similar association signatures to those observed for lactation QTL, strongly implicating one or both of these genes as responsible for these effects. Using the same gene expression dataset representing 357 lactating cows, we also identified 38 novel RNA editing sites in the 3′ UTR of CSF2RB transcripts. The extent to which two of these sites were edited also appears to be genetically co-regulated with lactation QTL, highlighting a further layer of regulatory complexity that involves the CSF2RB gene. Conclusions This locus presents a diversity of molecular and lactation QTL, likely representing multiple overlapping effects that, at a minimum, highlight the CSF2RB gene as having a causal role in these processes.fals

    A Capra hircus chromosome 19 locus linked to milk production influences mammary conformation

    Get PDF
    Background Economically important milk production traits including milk volume, milk fat and protein yield vary considerably across dairy goats in New Zealand. A significant portion of the variation is attributable to genetic variation. Discovery of genetic markers linked to milk production traits can be utilised to drive selection of high-performance animals. A previously reported genome wide association study across dairy goats in New Zealand identified a quantitative trait locus (QTL) located on chromosome 19. The most significantly associated single nucleotide polymorphism (SNP) marker for this locus is located at position 26,610,610 (SNP marker rs268292132). This locus is associated with multiple milk production traits including fat, protein and volume. The predicted effect of selection for the beneficial haplotype would result in an average production increase of 2.2 kg fat, 1.9 kg protein and 73.6 kg milk yield. An outstanding question was whether selection for the beneficial allele would co-select for any negative pleiotropic effects. An adverse relationship between milk production and udder health traits has been reported at this locus. Therefore, a genome wide association study was undertaken looking for loci associated with udder traits. Results The QTL and production associated marker rs268292132 was identified in this study to also be associated with several goat udder traits including udder depth (UD), fore udder attachment (FUA) and rear udder attachment (RUA). Our study replicates the negative relationship between production and udder traits with the high production allele at position 19:26,610,610 (SNP marker rs268292132) associated with an adverse change in UD, FUA and RUA. Conclusions Our study has confirmed the negative relationship between udder traits and production traits in the NZ goat population. We have found that the frequency of the high production allele is relatively high in the NZ goat population, indicating that its effect on udder conformation is not significantly detrimental on animal health. It will however be important to monitor udder conformation as the chromosome 19 locus is progressively implemented for marker assisted selection. It will also be of interest to determine if the gene underlying the production QTL has a direct effect on mammary gland morphology or whether the changes observed are a consequence of the increased milk volume

    Molecular diagnosis of Huntington disease in Portugal : implications for genetic counselling and clinical practice

    Get PDF
    Huntington disease (HD) is a eurodegenerative, autosomal dominant disorder of late-onset, caused by the expansion of a CAG repeat in the coding region of the gene. Ours is the reference laboratory for genetic testing in HD, in Portugal, since 1998; 90.1% of all 158 families known were identified for the first time, including patients with unusual presentation or without family history. A total of 338 genetic tests were performed: 234 for diagnosis, 96 for presymptomatic and four for prenatal testing (four were done for family studies). Most referring physicians were neurologists (90.6%); 82.8% of all clinical diagnosis were confirmed, while 83.1% of those sent for exclusion were in fact excluded. In presymptomatic testing, an excess of female subjects (59.4%) was again verified; 37.5% of the consultands were found to be carriers. None of the foetuses, in four prenatal tests, were mutation carriers. One juvenile case was inherited from her mother. Our patient population is very similar to others described so far, namely in terms of mean age at onset and (CAG)n distribution, except perhaps for a higher frequency of large normal (class 2) alleles (3.7%). We also identify cases posing particular problems for genetic counselling, such as, ‘homozygosity’ that can pose a serious ethical dilemma, carriers of large normal alleles, and ‘homoallelism’ for a normal gene, which will demand further procedures and may delay results in presymptomatic and prenatal testing

    Huntington's disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database.

    Get PDF
    BACKGROUND: Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. METHODS: To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. RESULTS: Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http://hdtt.sysbiolab.eu Additionally, we derived a candidate set of 24 novel genetic modifiers, including histone deacetylase 3 (HDAC3), metabotropic glutamate receptor 1 (GRM1), CDK5 regulatory subunit 2 (CDK5R2), and coactivator 1ß of the peroxisome proliferator-activated receptor gamma (PPARGC1B). CONCLUSIONS: The results of our study give us an intriguing picture of the molecular complexity of HD. Our analyses can be seen as a first step towards a comprehensive list of biological processes, molecular functions, and pathways involved in HD, and may provide a basis for the development of more holistic disease models and new therapeutics

    Comparison of genomic prediction accuracies in dairy cattle lactation traits using five classes of functional variants versus generic SNP

    Get PDF
    Background: Genomic selection, typically employing genetic markers from SNP chips, is routine in modern dairy cattle breeding. This study assessed the impact of functional sequence variants on genomic prediction accuracy relative to 50 k SNP chip markers for fat percent, protein percent, milk volume, fat yield, and protein yield in lactating dairy cattle. The functional variants were identified through GWAS, RNA-seq, Histone modification ChIP-seq, ATAC-seq, or were coding variants. The genomic prediction accuracy obtained using each class of functional variants was compared with matched numbers of SNPs randomly selected from the Illumina 50 k SNP chip. Results: The investigation revealed that variants identified by GWAS or RNA-seq, significantly improved the prediction accuracy across all five traits. Contributions from ChIP-seq, ATAC-seq, and coding variants varied. Some variants identified using ChIP-seq showed marked improvements, while others reduced accuracy in protein yield predictions. Relative to a matched number of 32,595 SNPs from the SNP chip, pooling all the functional variants demonstrated prediction accuracy increases of 1.76% for fat percent, 2.97% for protein percent, 0.51% for milk volume, and 0.26% for fat yield, but with a slight decrease of 0.43% in protein yield. Conclusion: The study demonstrates that functional variants can improve prediction accuracy relative to equivalent numbers of variants from a generic SNP panel, with percent traits showing more significant gains than yield traits. The main advantage of using functional variants for genomic prediction was achievement of comparable accuracy using a smaller, more selective set of loci. This is particularly evident in trait-specific scenarios. Our findings indicate that specific combinations of functional variants comprising 16 k variants can achieve genomic prediction accuracy comparable to employing a standard panel of twice the size (32.6 k), especially for percent traits. This highlights the potential for the development of more efficient, trait-focused SNP panels utilizing functional variants.fals

    HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington’s Disease

    Get PDF
    Huntington's disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu.CHDI Foundation [A-2666]; Portuguese Fundacao para a Ciencia e a Tecnologia [SFRH/BPD/70718/2010, SFRH/BPD/96890/2013, IF/00881/2013, UID/BIM/04773/2013 - CBMR, UID/Multi/04326/2013 - CCMAR]info:eu-repo/semantics/publishedVersio

    Screening for phenotypic outliers identifies an unusually low concentration of a β-lactoglobulin B protein isoform in bovine milk caused by a synonymous SNP.

    Get PDF
    Background Milk samples from 10,641 dairy cattle were screened by a mass spectrometry method for extreme concentrations of the A or B isoforms of the whey protein, β-lactoglobulin (BLG), to identify causative genetic variation driving changes in BLG concentration. Results A cohort of cows, from a single sire family, was identified that produced milk containing a low concentration of the BLG B protein isoform. A genome-wide association study (GWAS) of BLG B protein isoform concentration in milk from AB heterozygous cows, detected a group of highly significant single nucleotide polymorphisms (SNPs) within or close to the BLG gene. Among these was a synonymous G/A variation at position + 78 bp in exon 1 of the BLG gene (chr11:103256256G > A). The effect of the A allele of this SNP (which we named B’) on BLG expression was evaluated in a luciferase reporter assay in transfected CHO-K1 and MCF-7 cells. In both cell types, the presence of the B’ allele in a plasmid containing the bovine BLG gene from -922 to + 898 bp (relative to the transcription initiation site) resulted in a 60% relative reduction in mRNA expression, compared to the plasmid containing the wild-type B sequence allele. Examination of a mammary RNAseq dataset (n = 391) identified 14 heterozygous carriers of the B’ allele which were homozygous for the BLG B protein isoform (BB’). The level of expression of the BLG B’ allele was 41.9 ± 1.0% of that of the wild-type BLG B allele. Milk samples from three cows, homozygous for the A allele at chr11:103,256,256 (B’B’), were analysed (HPLC) and showed BLG concentrations of 1.04, 1.26 and 1.83 g/L relative to a mean of 4.84 g/L in milk from 16 herd contemporaries of mixed (A and B) BLG genotypes. The mechanism by which B’ downregulates milk BLG concentration remains to be determined. Conclusions High-throughput screening and identification of outliers, enabled the discovery of a synonymous G > A mutation in exon 1 of the B allele of the BLG gene (B’), which reduced the milk concentration of β-lactoglobulin B protein isoform, by more than 50%. Milk from cows carrying the B’ allele is expected to have improved processing characteristics, particularly for cheese-making.fals

    Alzheimer's disease markers in the aged sheep (Ovis aries)

    Get PDF
    This study reports the identification and characterization of markers of Alzheimer's disease (AD) in aged sheep (Ovis aries) as a preliminary step toward making a genetically modified large animal model of AD. Importantly, the sequences of key proteins involved in AD pathogenesis are highly conserved between sheep and human. The processing of the amyloid-β (Aβ) protein is conserved between sheep and human, and sheep Aβ1–42/Aβ1–40 ratios in cerebrospinal fluid (CSF) are also very similar to human. In addition, total tau and neurofilament light levels in CSF are comparable with those found in human. The presence of neurofibrillary tangles in aged sheep brain has previously been established; here, we report for the first time that plaques, the other pathologic hallmark of AD, are also present in the aged sheep brain. In summary, the biological machinery to generate the key neuropathologic features of AD is conserved between the human and sheep, making the sheep a good candidate for future genetic manipulation to accelerate the condition for use in pathophysiological discovery and therapeutic testing
    corecore