20 research outputs found

    Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells

    No full text
    We investigated the properties of glycine receptors and glycinergic synaptic inputs at the axon terminals of rod bipolar cells (RBCs) in rats by patch-clamp recording. Glycine currents recorded from isolated axon terminals were larger than those from isolated somata/dendrites; this was confirmed by puffing glycine onto these two regions in retinal slices. The current density at terminal endings was more than one order of magnitude higher than the density at somatic/dendritic regions. Glycine currents from isolated terminals and isolated somata/dendrites showed similar sensitivity to picrotoxinin blockade. Single-channel opening recorded from isolated terminals and somata/dendrites displayed a similar main-state conductance of ≈46 pS. Application of glycine effectively suppressed depolarization-evoked increases in intracellular Ca2+ at the terminals. In the presence of GABAA and GABAC antagonists, strychnine-sensitive chloride currents were evoked in RBCs in retinal slices by puffing kainate onto the inner plexiform layer. No such currents were observed if the recorded RBCs did not retain axon terminals or if Ca2+ was replaced by Co2+ in the extracellular solution. The currents displayed discrete miniature-like events, which were partially blocked by tetrodotoxin. Consistent with early studies in the rabbit and mouse, this study demonstrates that glycine receptors are highly concentrated at the axon terminals of rat RBCs. The pharmacological and physiological properties of glycine receptors located in the axon terminal and somatic/dendritic regions, however, appear to be the same. This study provides evidence for the existence of functional glycinergic synaptic input at the axon terminals of RBCs, suggesting that glycine receptors may play a role in modulating bipolar cell synaptic transmission

    Distinct Roles for Inhibition in Spatial and Temporal Tuning of Local Edge Detectors in the Rabbit Retina

    Get PDF
    This paper examines the role of inhibition in generating the receptive-field properties of local edge detector (LED) ganglion cells in the rabbit retina. We confirm that the feed-forward inhibition is largely glycinergic but, contrary to a recent report, our data demonstrate that the glycinergic inhibition contributes to temporal tuning for the OFF and ON inputs to the LEDs by delaying the onset of spiking; this delay was more pronounced for the ON inputs (∼340 ms) than the OFF inputs (∼12 ms). Blocking glycinergic transmission reduced the delay to spike onset and increased the responses to flickering stimuli at high frequencies. Analysis of the synaptic conductances indicates that glycinergic amacrine cells affect temporal tuning through both postsynaptic inhibition of the LEDs and presynaptic modulation of the bipolar cells that drive the LEDs. The results also confirm that presynaptic GABAergic transmission contributes significantly to the concentric surround antagonism in LEDs; however, unlike presumed LEDs in the mouse retina, the surround is only partly generated by spiking amacrine cells
    corecore