34 research outputs found

    Quantum magnetism and criticality

    Get PDF
    Magnetic insulators have proved to be fertile ground for studying new types of quantum many body states, and I survey recent experimental and theoretical examples. The insights and methods transfer also to novel superconducting and metallic states. Of particular interest are critical quantum states, sometimes found at quantum phase transitions, which have gapless excitations with no particle- or wave-like interpretation, and control a significant portion of the finite temperature phase diagram. Remarkably, their theory is connected to holographic descriptions of Hawking radiation from black holes.Comment: 39 pages, 10 figures, review article for non-specialists; (v2) added clarifications and references; (v3) minor corrections; (v4) added footnote on hydrodynamic long-time tail

    Beyond Gross-Pitaevskii Mean Field Theory

    Full text link
    A large number of effects related to the phenomenon of Bose-Einstein Condensation (BEC) can be understood in terms of lowest order mean field theory, whereby the entire system is assumed to be condensed, with thermal and quantum fluctuations completely ignored. Such a treatment leads to the Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although this theory works remarkably well for a broad range of experimental parameters, a more complete treatment is required for understanding various experiments, including experiments with solitons and vortices. Such treatments should include the dynamical coupling of the condensate to the thermal cloud, the effect of dimensionality, the role of quantum fluctuations, and should also describe the critical regime, including the process of condensate formation. The aim of this Chapter is to give a brief but insightful overview of various recent theories, which extend beyond the GPE. To keep the discussion brief, only the main notions and conclusions will be presented. This Chapter generalizes the presentation of Chapter 1, by explicitly maintaining fluctuations around the condensate order parameter. While the theoretical arguments outlined here are generic, the emphasis is on approaches suitable for describing single weakly-interacting atomic Bose gases in harmonic traps. Interesting effects arising when condensates are trapped in double-well potentials and optical lattices, as well as the cases of spinor condensates, and atomic-molecular coupling, along with the modified or alternative theories needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer Verlag

    Humoral and Cellular CMV Responses in Healthy Donors; Identification of a Frequent Population of CMV-Specific, CD4+ T Cells in Seronegative Donors

    Get PDF
    CMV status is an important risk factor in immune compromised patients. In hematopoeitic cell transplantations (HCT), both donor and recipient are tested routinely for CMV status by serological assays; however, one might argue that it might also be of relevance to examine CMV status by cellular (i.e., T lymphocyte) assays. Here, we have analyzed the CMV status of 100 healthy blood bank donors using both serology and cellular assays. About half (56%) were found to be CMV seropositive, and they all mounted strong CD8+ and/or moderate CD4+ T cell responses ex vivo against the immunodominant CMV protein, pp65. Of the 44 seronegative donors, only five (11%) mounted ex vivo T cell responses; surprisingly, 33 (75%) mounted strong CD4+ T cell responses after a brief in vitro peptide stimulation culture. This may have significant implications for the analysis and selection of HCT donors
    corecore