6 research outputs found

    Adsorption of meloxicam on porous calcium silicate: Characterization and tablet formulation

    No full text
    The purpose of the present study was characterization of microparticles obtained by adsorption of poorly water soluble drug, meloxicam, on a porous silicate carrier Florite RE (FLR) and development of a tablet formulation using these microparticles, with improved drug dissolution properties. The study also reveals the use of FLR as a pharmaceutical excipient. Meloxicam was adsorbed on the FLR in 2 proportions (1∶1 and 1∶3), by fast evaporation of solvent from drug solution containing dispersed FLR. Drug adsorbed FLR microparticles were evaluated for surface topography, thermal analysis, X-ray diffraction properties, infrared spectrum, residual solvent, micromeritic properties, drug content, solubility, and dissolution studies. Microparticles showed bulk density in the range of 0.10 to 0.12 g/cm3. Dissolution of drug from microparticles containing 1∶3, drug∶FLR ratio was faster than microparticles containing 1∶1, drug∶FLR ratio. These microparticles were used for formulating directly compressible tablets. Prepared tablets were compared with a commercial tablet. All the prepared tablets showed acceptable mechanical properties. Disintegration time of prepared tablets was in the range of 18 to 38 seconds, and drug dissolution was much faster in both acidic and basic medium from prepared tablets as compared with commercial tablet. The results suggest that FLR provides a large surface area for drug adsorption and also that a reduction in crystallinity of drug occurs. Increase in surface area and reduction in drug crystallinity result in improved drug dissolution from microparticles

    The Influence of Some Nonsteroidal Anti-inflammatory Drugs on Metabolic Enzymes of Aldose Reductase, Sorbitol Dehydrogenase, and α-Glycosidase: a Perspective for Metabolic Disorders

    No full text
    Pain, as a sensible alarm signal of living organisms to avoid tissue damage, is a common and debilitating consequence of a lot of disorders and diseases. The management of chronic pain is particularly challenging. For pain treatment, many analgesic drugs are used for their therapeutic effects. In this study, some nonsteroidal anti-inflammatory drugs including etofenamate, meloxicam, diclofenac, and tenoxicam were tested against α-glycosidase from Saccharomyces cerevisiae, sorbitol dehydrogenase (SDH), and aldose reductase (AR) enzymes from sheep liver. Nonsteroidal anti-inflammatory drugs demonstrated useful inhibition properties against α-glycosidase, AR, and SDH enzymes. Ki values were found in the range of 11.93 ± 3.77–364.88 ± 40.01 μM for α-glycosidase, 3.36 ± 1.08μM–17.68 ± 3.39 mM for AR, and 1.68 ± 0.02 μM–30.98 ± 14.31 mM for SDH. They can be selective drugs as antidiabetic agents, because of their inhibitory properties against SDH, α-glycosidase, and AR enzymes. © 2019, Springer Science+Business Media, LLC, part of Springer Nature
    corecore