35 research outputs found

    Model based analysis of real-time PCR data from DNA binding dye protocols

    Get PDF
    BACKGROUND: Reverse transcription followed by real-time PCR is widely used for quantification of specific mRNA, and with the use of double-stranded DNA binding dyes it is becoming a standard for microarray data validation. Despite the kinetic information generated by real-time PCR, most popular analysis methods assume constant amplification efficiency among samples, introducing strong biases when amplification efficiencies are not the same. RESULTS: We present here a new mathematical model based on the classic exponential description of the PCR, but modeling amplification efficiency as a sigmoidal function of the product yield. The model was validated with experimental results and used for the development of a new method for real-time PCR data analysis. This model based method for real-time PCR data analysis showed the best accuracy and precision compared with previous methods when used for quantification of in-silico generated and experimental real-time PCR results. Moreover, the method is suitable for the analyses of samples with similar or dissimilar amplification efficiency. CONCLUSION: The presented method showed the best accuracy and precision. Moreover, it does not depend on calibration curves, making it ideal for fully automated high-throughput applications
    corecore