18 research outputs found

    The Vulnverability Cube: A Multi-Dimensional Framework for Assessing Relative Vulnerability

    Get PDF
    The diversity and abundance of information available for vulnerability assessments can present a challenge to decision-makers. Here we propose a framework to aggregate and present socioeconomic and environmental data in a visual vulnerability assessment that will help prioritize management options for communities vulnerable to environmental change. Socioeconomic and environmental data are aggregated into distinct categorical indices across three dimensions and arranged in a cube, so that individual communities can be plotted in a three-dimensional space to assess the type and relative magnitude of the communitiesā€™ vulnerabilities based on their position in the cube. We present an example assessment using a subset of the USEPA National Estuary Program (NEP) estuaries: coastal communities vulnerable to the effects of environmental change on ecosystem health and water quality. Using three categorical indices created from a pool of publicly available data (socioeconomic index, land use index, estuary condition index), the estuaries were ranked based on their normalized averaged scores and then plotted along the three axes to form a vulnerability cube. The position of each community within the three-dimensional space communicates both the types of vulnerability endemic to each estuary and allows for the clustering of estuaries with like-vulnerabilities to be classified into typologies. The typologies highlight specific vulnerability descriptions that may be helpful in creating specific management strategies. The data used to create the categorical indices are flexible depending on the goals of the decision makers, as different data should be chosen based on availability or importance to the system. Therefore, the analysis can be tailored to specific types of communities, allowing a data rich process to inform decision-making

    Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    Get PDF
    Ā© 2016 International Society for Microbial Ecology All rights reserved. Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success
    corecore