33 research outputs found

    Continued Neurogenesis in Adult Drosophila as a Mechanism for Recruiting Environmental Cue-Dependent Variants

    Get PDF
    Background The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms. Methodology/Principal Findings A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density. Conclusions We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much regarding the ability of Drosophila to robustly adapt to their environment

    A review of modelling tools for implementation of the EU Water Framework Directive in handling diffuse water pollution

    Get PDF
    A numerical catchment-scale model capable of simulating diffuse water pollution is necessary in sustainable environmental management for better implementation of the EU Water Framework Directive. This paper provides critical reviews of most popular and free models for diffuse water modelling, with detailed sources and application potential. Based upon these reviews, further work of selecting and testing the HSPF model was carried out, with a case study in the Upper Bann Catchment, Northern Ireland. The calibrated and validated HSPF model can well represent the characteristics of surface water quantity and quality. Climate change scenario evaluation in 5 years showed that when the annual mean temperature increase 3â—¦C the mean yearly total runoff volume will decrease by 11.1% and the mean daily river flow 11.4%. If 20% crop and pasture land is converted into forest land in the study area, the mean river concentration of nitrate, nitrite, NH4 and PO4 in 5 years will decrease by 19.4%, 33.3%, 31.3% and 31.3% respectively. When applying filter strip method in 80% crop and pasture land in the area, the reduction of the mean concentration of nitrate, nitrite, NH4 and PO4 in 5 years will be 15.3%, 33.3%, 31.3%, and 5.6% respectively. This study shows that HSPF is a suitable model in handling diffuse source water pollution, which can be introduced into the Programme of Measures in the River Basin Management Plans for better implementation of the EUWFD

    Haploinsufficiency of the SERPINA6 gene is associated with severe muscle fatigue: a de novo mutation in corticosteroid-binding globulin deficiency

    No full text
    Corticosteroid-binding globulin (SERPINA6) deficiency is an extremely rare hereditary disorder characterized by reduced corticosteroid-binding capacity with normal or low plasma corticosteroid-binding globulin concentration, and normal or low basal cortisol levels associated with hypo-/hypertension and muscle fatigue. Here, we present a patient with severe muscle fatigue, normal blood pressure, and abnormal high saliva cortisol levels following a standardized stress test. This patient was found heterozygous for a de novo 367 asparagine-encoding variant of the corticosteroid-binding globulin gene, previously described as "transcortin Lyon". Both parents were homozygous for the ("wildtype") 367 aspartate-encoding allele. To the best of our knowledge, this case represents the first de novo mutation reported for corticosteroid-binding globulin deficiency, implicating a pathogenic role of variants of SERPINA6 in some cases of muscle fatigue
    corecore