14,837 research outputs found

    Evidence of unconventional low-frequency dynamics in the normal phase of Ba(Fe1-xRhx)2As2 iron-based supercondutors

    Full text link
    This work presents 75As NMR spin echo decay rate (1/T2) measurements in Ba(Fe1-xRhx)2As2 superconductors, for 0.041 < x < 0.094. It is shown that 1/T2 increases upon cooling, in the normal phase, suggesting the onset of an unconventional very low-frequency activated dynamic. The correlation times of the fluctuations and their energy barriers are derived. The motion is favored at large Rh content, while it is hindered by the application of a magnetic field perpendicular to the FeAs layers. The same dynamic is observed in the spin-lattice relaxation rate, in a quantitatively consistent manner. These results are discussed in the light of nematic fluctuations involving domain wall motion. The analogies with the behaviour observed in the cuprates are also outlined

    Measurement of opaque film thickness

    Get PDF
    The theoretical and experimental framework for thickness measurements of thin metal films by low frequency thermal waves is described. Although it is assumed that the films are opaque and the substrates are comparatively poor thermal conductors, the theory is easily extended to other cases of technological interest. A brief description is given of the thermal waves and the experimental arrangement and parameters. The usefulness of the technique is illustrated for making absolute measurements of the thermal diffusivities of isotropic substrate materials. This measurement on pure elemental solids provides a check on the three dimensional theory in the limiting case of zero film thickness. The theoretical framework is then presented, along with numerical calculations and corresponding experimental results for the case of copper films on a glass substrate

    Quantum critical dynamics of a S = 1/2 antiferromagnetic Heisenberg chain studied by 13C-NMR spectroscopy

    Full text link
    We present a 13C-NMR study of the magnetic field driven transition to complete polarization of the S=1/2 antiferromagnetic Heisenberg chain system copper pyrazine dinitrate Cu(C_4H_4N_2)(NO_3)_2 (CuPzN). The static local magnetization as well as the low-frequency spin dynamics, probed via the nuclear spin-lattice relaxation rate 1/T_1, were explored from the low to the high field limit and at temperatures from the quantum regime (k_B T << J) up to the classical regime (k_B T >> J). The experimental data show very good agreement with quantum Monte Carlo calculations over the complete range of parameters investigated. Close to the critical field, as derived from static experiments, a pronounced maximum in 1/T_1 is found which we interpret as the finite-temperature manifestation of a diverging density of zero-energy magnetic excitations at the field-driven quantum critical point.Comment: 5 pages, 4 figure
    corecore