29 research outputs found
Detection of a Single Identical Cytomegalovirus (CMV) Strain in Recently Seroconverted Young Women
Infection with multiple CMV strains is common in immunocompromised hosts, but its occurrence in normal hosts has not been well-studied.We analyzed CMV strains longitudinally in women who acquired CMV while enrolled in a CMV glycoprotein B (gB) vaccine trial. Sequencing of four variable genes was performed in samples collected from seroconversion and up to 34 months thereafter.199 cultured isolates from 53 women and 65 original fluids from a subset of 19 women were sequenced. 51 women were infected with one strain each without evidence for genetic drift; only two women shed multiple strains. Genetic variability among strains increased with the number of sequenced genetic loci. Nevertheless, 13 of 53 women proved to be infected with an identical CMV strain based on sequencing at all four variable genes. CMV vaccine did not alter the degree of genetic diversity amongst strains.Primary CMV infection in healthy women nearly always involves shedding of one strain that remains stable over time. Immunization with CMVgB-1 vaccine strain is not selective against specific strains. Although 75% of women harbored their unique strain, or a strain shared with only one other woman, 25% shared a single common strain, suggesting that this predominant strain with a particular combination of genetic loci is advantageous in this large urban area
Functional Interaction of Nuclear Domain 10 and Its Components with Cytomegalovirus after Infections: Cross-Species Host Cells versus Native Cells
Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection
A Novel Human Cytomegalovirus Locus Modulates Cell Type-Specific Outcomes of Infection
Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULb′ that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULb′-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULb′ sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2Rγcnull-humanized mouse model. The UL133-UL138NULL virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations
Washing our hands of the congenital cytomegalovirus disease epidemic
BACKGROUND: Each year in the United States, an estimated 40,000 children are born with congenital cytomegalovirus (CMV) infection, causing an estimated 400 deaths and leaving approximately 8000 children with permanent disabilities such as hearing or vision loss, or mental retardation. More children are affected by serious CMV-related disabilities than by several better-known childhood maladies, including Down syndrome, fetal alcohol syndrome, and spina bifida. DISCUSSION: Congenital CMV is a prime target for prevention not only because of its substantial disease burden but also because the biology and epidemiology of CMV suggest that there are ways to reduce viral transmission. Because exposure to the saliva or urine of young children is a major cause of CMV infection among pregnant women, it is likely that good personal hygiene, especially hand-washing, can reduce the risk of CMV acquisition. Experts agree that such measures are likely to be efficacious (i.e., they will work if consistently followed) and the American College of Obstetricians and Gynecologists recommends that physicians counsel pregnant women about preventing CMV acquisition through careful attention to hygiene. However, because of concerns about effectiveness (i.e., Will women consistently follow hygienic practices as the result of interventions?), the medical and public health communities appear reluctant to embrace primary CMV prevention via improved hygienic practices, and educational interventions are rare. Current data on the effectiveness of such measures in preventing CMV infection are promising, but limited. There is strong evidence, however, that educational interventions can prevent other infectious diseases with similar transmission modes, suggesting that effective interventions can also be found for CMV. Until a CMV vaccine becomes available, effective educational interventions are needed to inform women about congenital CMV prevention. SUMMARY: Perhaps no single cause of birth defects and developmental disabilities in the United States currently provides greater opportunity for improved outcomes in more children than congenital CMV. Given the present state of knowledge, women deserve to be informed about how they can reduce their risk of CMV infection during pregnancy, and trials are needed to identify effective educational interventions
Seminal Plasma and Semen Amyloids Enhance Cytomegalovirus Infection in Cell Culture
Among the modes of transmission available to the cytomegalovirus (CMV) is sexual transmission, primarily via semen. Both male-to-female (M-F) and male-to-male (M-M) sexual transmission significantly contribute toward the spread of CMV infections in the global population. Semen plays an important role in carrying the viral particle that invades the vaginal or rectal mucosa, thereby initiating viral replication. Both semen and seminal plasma (SP) can enhance HIV-1 infection in cell culture, and two amyloid fibrils, semen-derived enhancer of viral infection (SEVI) and amyloids derived from the semenogelins (SEM amyloids), have been identified as seminal factors sufficient to enhance HIV-1 infection (J. Munch et al., Cell 131:1059–1071, 2007; N. R. Roan et al., Cell Host Microbe 10:541–550, 2011; F. Arnold et al., J. Virol. 86:1244–1249, 2012). Whether SP, SEVI, or SEM amyloids can enhance other viral infections has not been extensively examined. In this study, we found that SP, SEVI, and SEM amyloids strongly enhance both human CMV (HCMV) and murine CMV infection in cell culture. SEVI and SEM amyloids increased infection rates by >10-fold, as determined by both flow cytometry and fluorescence microscopy. Viral replication was increased by 50- to 100-fold. Moreover, viral growth curve assays showed that SP, SEVI, and SEM amyloids sped up the kinetics of CMV replication such that the virus reached its replicative peak more quickly. Finally, we discovered that SEM amyloids and SEVI counteracted the effect of anti-gH in protecting against CMV infection. Collectively, the data suggest that semen enhances CMV infection through interactions between semen amyloid fibrils and viral particles, and these interactions may prevent HCMV from being neutralized by anti-gH antibody