39 research outputs found

    Molecular Phylogenetics and the Diversification of Hummingbirds

    Get PDF
    SummaryThe tempo of species diversification in large clades can reveal fundamental evolutionary mechanisms that operate on large temporal and spatial scales [1–4]. Hummingbirds have radiated into a diverse assemblage of specialized nectarivores comprising 338 species, but their evolutionary history has not, until now, been comprehensively explored. We studied hummingbird diversification by estimating a time-calibrated phylogeny for 284 hummingbird species, demonstrating that hummingbirds invaded South America by ∼22 million years ago, and subsequently diversified into nine principal clades (see [5–7]). Using ancestral state reconstruction and diversification analyses, we (1) estimate the age of the crown-group hummingbird assemblage, (2) investigate the timing and patterns of lineage accumulation for hummingbirds overall and regionally, and (3) evaluate the role of Andean uplift in hummingbird speciation. Detailed analyses reveal disparate clade-specific processes that allowed for ongoing species diversification. One factor was significant variation among clades in diversification rates. For example, the nine principal clades of hummingbirds exhibit ∼15-fold variation in net diversification rates, with evidence for accelerated speciation of a clade that includes the Bee, Emerald, and Mountain Gem groups of hummingbirds. A second factor was colonization of key geographic regions, which opened up new ecological niches. For example, some clades diversified in the context of the uplift of the Andes Mountains, whereas others were affected by the formation of the Panamanian land bridge. Finally, although species accumulation is slowing in all groups of hummingbirds, several major clades maintain rapid rates of diversification on par with classical examples of rapid adaptive radiation

    Phylogenetic and ecological determinants of the neotropical dawn chorus

    Get PDF
    The concentration of avian song at first light (i.e. the dawn chorus) is widely appreciated, but has an enigmatic functional significance. One widely accepted explanation is that birds are active at dawn, but light levels are not yet adequate for foraging. In forest communities, the onset to singing should thus be predictable from the species' foraging strata, which is ultimately related to ambient light level. To test this, we collected data from a tropical forest of Ecuador involving 57 species from 27 families of birds. Time of first song was a repeatable, species-specific trait, and the majority of resident birds, including non-passerines, sang in the dawn chorus. For passerine birds, foraging height was the best predictor of time of first song, with canopy birds singing earlier than birds foraging closer to the forest floor. A weak and opposite result was observed for non-passerines. For passerine birds, eye size also predicted time of first song, with larger eyed birds singing earlier, after controlling for body mass, taxonomic group and foraging height. This is the first comparative study of the dawn chorus in the Neotropics, and it provides the first evidence for foraging strata as the primary determinant of scheduling participation in the dawn chorus of birds
    corecore