5,116 research outputs found
Self-consistent Ornstein-Zernike approximation for molecules with soft cores
The Self-Consistent Ornstein-Zernike Approximation (SCOZA) is an accurate
liquid state theory. So far it has been tied to interactions composed of hard
core repulsion and long-range attraction, whereas real molecules have soft core
repulsion at short distances. In the present work, this is taken into account
through the introduction of an effective hard core with a diameter that depends
upon temperature only. It is found that the contribution to the configurational
internal energy due to the repulsive reference fluid is of prime importance and
must be included in the thermodynamic self-consistency requirement on which
SCOZA is based. An approximate but accurate evaluation of this contribution
relies on the virial theorem to gauge the amplitude of the pair distribution
function close to the molecular surface. Finally, the SCOZA equation is
transformed by which the problem is reformulated in terms of the usual SCOZA
with fixed hard core reference system and temperature-dependent interaction
Capture and release of a conditional state of a cavity QED system by quantum feedback
Detection of a single photon escaping an optical cavity QED system prepares a nonclassical state of the electromagnetic field. The evolution of the state can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured (stabilized) and then released. This is observed by a conditional intensity measurement that shows suppression of vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return
Recommended from our members
Developing a generic System Dynamics model for building stock transformation towards energy efficiency and low-carbon development
A Promoting the decarbonisation of buildings requires effective policy measures. An integral part of policy design is ex-ante evaluation of possible policy options and effects. System Dynamics, one of a range of potential modelling paradigms, emphasises
Whole Genome Duplications and a ‘Function’ for Junk DNA? Facts and Hypotheses
International audienceBACKGROUND: The lack of correlation between genome size and organismal complexity is understood in terms of the massive presence of repetitive and non-coding DNA. This non-coding subgenome has long been called "junk" DNA. However, it might have important functions. Generation of junk DNA depends on proliferation of selfish DNA elements and on local or global DNA duplication followed by genic non-functionalization. METHODOLOGY/PRINCIPAL FINDINGS: Evidence from genomic analyses and experimental data indicates that Whole Genome Duplications (WGD) are often followed by a return to the diploid state, through DNA deletions and intra/interchromosomal rearrangements. We use simple theoretical models and simulations to explore how a WGD accompanied by sequence deletions might affect the dosage balance often required among several gene products involved in regulatory processes. We find that potential genomic deletions leading to changes in nuclear and cell volume might potentially perturb gene dosage balance. CONCLUSIONS/SIGNIFICANCE: The potentially negative impact of DNA deletions can be buffered if deleted genic DNA is, at least temporarily, replaced by repetitive DNA so that the nuclear/cell volume remains compatible with normal living. Thus, we speculate that retention of non-functionalized non-coding DNA, and replacement of deleted DNA through proliferation of selfish elements, might help avoid dosage imbalances in cycles of polyploidization and diploidization, which are particularly frequent in plants
Recommended from our members
Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China
Building lifetime and stock turnover are both key determinants in modelling building energy and carbon. However in China, aside from anecdotal claims that urban residential buildings are generally short-lived, there are no recent official statistics, and empirical data are extremely limited. We present a system dynamics model where survival analysis is used to characterise the dynamic interplay between new construction, aging, and demolition of residential buildings in urban China. The uncertainties associated with building lifetime were represented using a Weibull distribution, whose shape and scale parameters were calibrated based on official statistics on floor area up to 2006. The calibrated Weibull lifetime distribution allowed us to estimate the dynamic stock turnover of Chinese urban residential buildings for 2007 to 2017. We find that the average lifetime of urban residential buildings was around 34 years, and the overall residential stock size reached 23.7 billion m2 in 2017. The resultant age-specific sub-stocks provide a baseline for the overall stock, which—along with the calibrated Weibull lifetime distribution—can be used in further modelling and for analysis of policies to reduce the whole-life embodied and operational energy and CO2 emissions in Chinese residential buildings
A Tableaux Calculus for Reducing Proof Size
A tableau calculus is proposed, based on a compressed representation of
clauses, where literals sharing a similar shape may be merged. The inferences
applied on these literals are fused when possible, which reduces the size of
the proof. It is shown that the obtained proof procedure is sound,
refutationally complete and allows to reduce the size of the tableau by an
exponential factor. The approach is compatible with all usual refinements of
tableaux.Comment: Technical Repor
Quaternion algebras with the same subfields
G. Prasad and A. Rapinchuk asked if two quaternion division F -algebras that
have the same subfields are necessarily isomorphic. The answer is known to be
"no" for some very large fields. We prove that the answer is "yes" if F is an
extension of a global field K so that F /K is unirational and has zero
unramified Brauer group. We also prove a similar result for Pfister forms and
give an application to tractable fields
Recommended from our members
Forecasting Urban Residential Stock Turnover Dynamics using System Dynamics and Bayesian Model Averaging
Knowing the size of the building stock is perhaps the most basic determinant in assessing energy use in buildings. However, official statistics on urban residential stock for many countries are piecemeal at best. Previous studies estimating stock size an
- …