2,552 research outputs found
Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order
The master equation describing the non-equilibrium dynamics of a quantum dot
coupled to metallic leads is considered. Employing a superoperator approach, we
derive an exact time-convolutionless master equation for the probabilities of
dot states, i.e., a time-convolutionless Pauli master equation. The generator
of this master equation is derived order by order in the hybridization between
dot and leads. Although the generator turns out to be closely related to the
T-matrix expressions for the transition rates, which are plagued by
divergences, in the time-convolutionless generator all divergences cancel order
by order. The time-convolutionless and T-matrix master equations are contrasted
to the Nakajima-Zwanzig version. The absence of divergences in the
Nakajima-Zwanzig master equation due to the nonexistence of secular reducible
contributions becomes rather transparent in our approach, which explicitly
projects out these contributions. We also show that the time-convolutionless
generator contains the generator of the Nakajima-Zwanzig master equation in the
Markov approximation plus corrections, which we make explicit. Furthermore, it
is shown that the stationary solutions of the time-convolutionless and the
Nakajima-Zwanzig master equations are identical. However, this identity neither
extends to perturbative expansions truncated at finite order nor to dynamical
solutions. We discuss the conditions under which the Nakajima-Zwanzig-Markov
master equation nevertheless yields good results.Comment: 13 pages + appendice
A Dusty Disk Around WD1150-153: Explaining the Metals in White Dwarfs by Accretion from the Interstellar Medium versus Debris Disks
We report the discovery of excess K-band radiation from a metal-rich DAV
white dwarf star, WD1150-153. Our near infrared spectroscopic observations show
that the excess radiation cannot be explained by a (sub)stellar companion, and
is likely to be caused by a debris disk similar to the other DAZ white dwarfs
with circumstellar debris disks. We find that the fraction of DAZ white dwarfs
with detectable debris disks is at least 14%. We also revisit the problem of
explaining the metals in white dwarf photospheres by accretion from the
interstellar medium (ISM). We use the observed interstellar column densities
toward stars in close angular proximity and similar distance as DAZ white
dwarfs to constrain the contribution of accretion from the ISM. We find no
correlation between the accretion density required to supply metals observed in
DAZs with the densities observed in their interstellar environment, indicating
that ISM accretion alone cannot explain the presence of metals in nearby DAZ
white dwarfs. Although ISM accretion will certainly contribute, our analysis
indicates that it is not the dominant source of metals for most DAZ white
dwarfs. Instead, the growing number of circumstellar debris disks around DAZs
suggests that circumstellar material may play a more dominant role in polluting
the white dwarf atmospheres.Comment: ApJ, in pres
The American Bar Association Joint Task Force on Reversing the School-to-Prison Pipeline Preliminary Report
In 2014, the American Bar Association (ABA) Coalition on Racial and Ethnic Justice (COREJ) turned its attention to the continuing failures in the education system where certain groups of students — for example, students of color, with disabilities, or LGBTQ — are disproportionately over- or incorrectly categorized in special education, are disciplined more harshly, including referral to law enforcement for minimal misbehavior, achieve at lower levels, and eventually drop or are pushed out of school, often into juvenile justice facilities and prisons — a pattern now commonly referred to as the School-to-Prison Pipeline. While this problem certainly is not new, it presented a convergence of several laws, policies, and practices where the legal community’s intervention is critical. Joined by the ABA Pipeline Council and Criminal Justice Section, and supported by its sister ABA entities, COREJ sponsored a series of eight Town Halls across the country to investigate the issues surrounding this pipeline. The focus of these Town Halls was to 1) explore the issues as they presented themselves for various groups and various locales; 2) gather testimony on solutions that showed success, with particular focus on interventions where the legal community could be most effective in interrupting and reversing the School-to-Prison Pipeline; and 3) draw attention to the role implicit bias plays in creating and maintaining this pipeline. This report is a result of those convenings
Circuit theory for decoherence in superconducting charge qubits
Based on a network graph analysis of the underlying circuit, a quantum theory
of arbitrary superconducting charge qubits is derived. Describing the
dissipative elements of the circuit with a Caldeira-Leggett model, we calculate
the decoherence and leakage rates of a charge qubit. The analysis includes
decoherence due to a dissipative circuit element such as a voltage source or
the quasiparticle resistances of the Josephson junctions in the circuit. The
theory presented here is dual to the quantum circuit theory for superconducting
flux qubits. In contrast to spin-boson models, the full Hilbert space structure
of the qubit and its coupling to the dissipative environment is taken into
account. Moreover, both self and mutual inductances of the circuit are fully
included.Comment: 8 pages, 3 figures; v2: published version; typo in Eq.(30) corrected,
minor changes, reference adde
Far-Ultraviolet Activity Levels of F, G, K, and M dwarf Exoplanet Host Stars
We present a survey of far-ultraviolet (FUV; 1150 - 1450 Ang) emission line
spectra from 71 planet-hosting and 33 non-planet-hosting F, G, K, and M dwarfs
with the goals of characterizing their range of FUV activity levels,
calibrating the FUV activity level to the 90 - 360 Ang extreme-ultraviolet
(EUV) stellar flux, and investigating the potential for FUV emission lines to
probe star-planet interactions (SPIs). We build this emission line sample from
a combination of new and archival observations with the Hubble Space
Telescope-COS and -STIS instruments, targeting the chromospheric and transition
region emission lines of Si III, N V, C II, and Si IV.
We find that the exoplanet host stars, on average, display factors of 5 - 10
lower UV activity levels compared with the non-planet hosting sample; this is
explained by a combination of observational and astrophysical biases in the
selection of stars for radial-velocity planet searches. We demonstrate that UV
activity-rotation relation in the full F - M star sample is characterized by a
power-law decline (with index ~ -1.1), starting at rotation periods
>~3.5 days. Using N V or Si IV spectra and a knowledge of the star's bolometric
flux, we present a new analytic relationship to estimate the intrinsic stellar
EUV irradiance in the 90 - 360 Ang band with an accuracy of roughly a factor of
~2. Finally, we study the correlation between SPI strength and UV activity in
the context of a principal component analysis that controls for the sample
biases. We find that SPIs are not a statistically significant contributor to
the observed UV activity levels.Comment: ApJS, accepted. 33 pages in emulateapj, 13 figures, 10 table
A Decade of Hα Transits for HD 189733 b: Stellar Activity versus Absorption in the Extended Atmosphere
HD 189733 b is one of the most well studied exoplanets due to its large transit depth and host star brightness. The focus on this object has produced a number of high-cadence transit observations using high-resolution optical spectrographs. Here we present an analysis of seven full Hα transits of HD 189733 b using HARPS on the 3.6 meter La Silla telescope and HIRES on Keck I, taken over the course of nine years from 2006 to 2015. Hα transmission signals are analyzed as a function of the stellar activity level, as measured using the normalized core flux of the Ca II H and K lines. We find strong variations in the strength of the Hα transmission spectrum from epoch to epoch. However, there is no clear trend between the Ca II core emission and the strength of the in-transit Hα signal, although the transit showing the largest absorption value also occurs when the star is the most active. We present simulations of the in-transit contrast effect and find that the planet must consistently transit active latitudes with very strong facular and plage emission regions in order to reproduce the observed line strengths. We also investigate the measured velocity centroids with models of planetary rotation and show that the small line profile velocities could be due to large velocities in the upper atmosphere of the planet. Overall, we find it more likely that the measured Hα signals arise in the extended planetary atmosphere, although a better understanding of active region emission for active stars such as HD 189733 is needed
- …