2 research outputs found

    Enzymatic kinetic resolution of (RS)-1-(Phenyl)ethanols by Burkholderia cepacia lipase immobilized on magnetic nanoparticles

    Get PDF
    Lipase from Burkholderia cepacia immobilized on superparamagnetic nanoparticles using adsorption and chemisorption methodologies was efficiently applied as recyclable biocatalyst in the enzymatic kinetic resolution of (RS)-1-(phenyl)ethanols via transesterification reactions. (R)-Esters and the remaining (S)-alcohols were obtained with excellent enantiomeric excess (> 99%), which corresponds to a perfect process of enzymatic kinetic resolution (conversion 50%, E > 200). The transesterification reactions catalysed with B. cepacia lipase immobilized by the glutaraldehyde method showed the best results in terms of reusability, preserving the enzyme activity (conversion 50%, E > 200) for at least 8 successive cycles.A lipase proveniente da Burkholderia cepacia imobilizada em nanopartículas superparamagnéticas usando diferentes metodologias de imobilização (adsorção e quimiosorção) foi eficientemente aplicada como biocatalisador reciclável na resolução cinética de (RS)-1-(fenil)etanols através de reações de transesterificação. Os (R)-ésteres e os (S)-alcoóis foram obtidos com excelente excesso enantiomérico (> 99%), o que corresponde a um perfeito processo de resolução cinética enzimática (conversão 50%, E > 200). As reações de transesterificação catalisadas pela lipase de B. cepacia imobilizada pela metodologia com glutaraldeído apresentaram os melhores resultados em termos de conversão após 8 ciclos de reação.FAPESPCNPqPETROBRA

    Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized by different methodologies on superparamagnetic nanoparticles

    No full text
    Burkholderia cepacia lipase was immobilized on superparamagnetic nanoparticles using three different methodologies (adsorption, chemisorption with carboxibenzaldehyde and chemisorption with glutaraldehyde) and employed in the kinetic resolution of a chiral drug precursor, (RS)-2-bromo-1-(phenyl)ethanol, via enantioselective acetylation reaction. An excellent improvement of lipase catalytical performance was observed. Free B. cepacia lipase gave the ester (S)-2 with poor E-value <30, and after its immobilization to magnetic nanoparticles the E-value was up to >200. The effect of several reaction parameters in the kinetic resolution was studied. The best results for kinetic resolution were obtained using vinyl acetate as acetyl donor and toluene as solvent, typically yielding the ester in high enantiomeric excess (>99%) and E-value (E > 200). Of the three tested immobilization methods, chemisorption with glutaraldehyde was the best one in terms of temperature stability and yield product. (C) 2010 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESPConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPqPETRO-BRASPETROBRA
    corecore