155 research outputs found

    Effectiveness of Action in India to Reduce Exposure of Gyps Vultures to the Toxic Veterinary Drug Diclofenac

    Get PDF
    Contamination of their carrion food supply with the non-steroidal anti-inflammatory drug diclofenac has caused rapid population declines across the Indian subcontinent of three species of Gyps vultures endemic to South Asia. The governments of India, Pakistan and Nepal took action in 2006 to prevent the veterinary use of diclofenac on domesticated livestock, the route by which contamination occurs. We analyse data from three surveys of the prevalence and concentration of diclofenac residues in carcasses of domesticated ungulates in India, carried out before and after the implementation of a ban on veterinary use. There was little change in the prevalence and concentration of diclofenac between a survey before the ban and one conducted soon after its implementation, with the percentage of carcasses containing diclofenac in these surveys estimated at 10.8 and 10.7%, respectively. However, both the prevalence and concentration of diclofenac had fallen markedly 7–31 months after the implementation of the ban, with the true prevalence in this third survey estimated at 6.5%. Modelling of the impact of this reduction in diclofenac on the expected rate of decline of the oriental white-backed vulture (Gyps bengalensis) in India indicates that the decline rate has decreased to 40% of the rate before the ban, but is still likely to be rapid (about 18% year−1). Hence, further efforts to remove diclofenac from vulture food are still needed if the future recovery or successful reintroduction of vultures is to be feasible

    Rate of Decline of the Oriental White-Backed Vulture Population in India Estimated from a Survey of Diclofenac Residues in Carcasses of Ungulates

    Get PDF
    The non-steroidal anti-inflammatory drug diclofenac is a major cause of the rapid declines in the Indian subcontinent of three species of vultures endemic to South Asia. The drug causes kidney failure and death in vultures. Exposure probably arises through vultures feeding on carcasses of domesticated ungulates treated with the drug. However, before the study reported here, it had not been established from field surveys of ungulate carcasses that a sufficient proportion was contaminated to cause the observed declines. We surveyed diclofenac concentrations in samples of liver from carcasses of domesticated ungulates in India in 2004–2005. We estimated the concentration of diclofenac in tissues available to vultures, relative to that in liver, and the proportion of vultures killed after feeding on a carcass with a known level of contamination. We assessed the impact of this mortality on vulture population trend with a population model. We expected levels of diclofenac found in ungulate carcasses in 2004–2005 to cause oriental white-backed vulture population declines of 80–99% per year, depending upon the assumptions used in the model. This compares with an observed rate of decline, from road transect counts, of 48% per year in 2000–2003. The precision of the estimate based upon carcass surveys is low and the two types of estimate were not significantly different. Our analyses indicate that the level of diclofenac contamination found in carcasses of domesticated ungulates in 2004–2005 was sufficient to account for the observed rapid decline of the oriental white-backed vulture in India. The methods we describe could be used again to assess changes in the effect on vulture population trend of diclofenac and similar drugs. In this way, the effectiveness of the recent ban in India on the manufacture and importation of diclofenac for veterinary use could be monitored

    Feasibility, acceptability, and cost of tuberculosis testing by whole-blood interferon-gamma assay

    Get PDF
    BACKGROUND: The whole-blood interferon-gamma release assay (IGRA) is recommended in some settings as an alternative to the tuberculin skin test (TST). Outcomes from field implementation of the IGRA for routine tuberculosis (TB) testing have not been reported. We evaluated feasibility, acceptability, and costs after 1.5 years of IGRA use in San Francisco under routine program conditions. METHODS: Patients seen at six community clinics serving homeless, immigrant, or injection-drug user (IDU) populations were routinely offered IGRA (Quantiferon-TB). Per guidelines, we excluded patients who were <17 years old, HIV-infected, immunocompromised, or pregnant. We reviewed medical records for IGRA results and completion of medical evaluation for TB, and at two clinics reviewed TB screening logs for instances of IGRA refusal or phlebotomy failure. RESULTS: Between November 1, 2003 and February 28, 2005, 4143 persons were evaluated by IGRA. 225(5%) specimens were not tested, and 89 (2%) were IGRA-indeterminate. Positive or negative IGRA results were available for 3829 (92%). Of 819 patients with positive IGRA results, 524 (64%) completed diagnostic evaluation within 30 days of their IGRA test date. Among 503 patients eligible for IGRA testing at two clinics, phlebotomy was refused by 33 (7%) and failed in 40 (8%). Including phlebotomy, laboratory, and personnel costs, IGRA use cost $33.67 per patient tested. CONCLUSION: IGRA implementation in a routine TB control program setting was feasible and acceptable among homeless, IDU, and immigrant patients in San Francisco, with results more frequently available than the historically described performance of TST. Laboratory-based diagnosis and surveillance for M. tuberculosis infection is now possible

    Influence of oxygen tension on myocardial performance. Evaluation by tissue Doppler imaging

    Get PDF
    BACKGROUND: Low O(2 )tension dilates coronary arteries and high O(2 )tension is a coronary vasoconstrictor but reports on O(2)-dependent effects on ventricular performance diverge. Yet oxygen supplementation remains first line treatment in cardiovascular disease. We hypothesized that hypoxia improves and hyperoxia worsens myocardial performance. METHODS: Seven male volunteers (mean age 38 ± 3 years) were examined with echocardiography at respiratory equilibrium during: 1) normoxia (≈21% O(2), 79% N(2)), 2) while inhaling a hypoxic gas mixture (≈11% O(2), 89% N(2)), and 3) while inhaling 100% O(2). Tissue Doppler recordings were acquired in the apical 4-chamber, 2-chamber, and long-axis views. Strain rate and tissue tracking displacement analyses were carried out in each segment of the 16-segment left ventricular model and in the basal, middle and apical portions of the right ventricle. RESULTS: Heart rate increased with hypoxia (68 ± 4 bpm at normoxia vs. 79 ± 5 bpm, P < 0.001) and decreased with hyperoxia (59 ± 5 bpm, P < 0.001 vs. normoxia). Hypoxia increased strain rate in four left ventricular segments and global systolic contraction amplitude was increased (normoxia: 9.76 ± 0.41 vs hypoxia: 10.87 ± 0.42, P < 0.001). Tissue tracking displacement was reduced in the right ventricular segments and tricuspid regurgitation increased with hypoxia (7.5 ± 1.9 mmHg vs. 33.5 ± 1.8 mmHg, P < 0.001). The TEI index and E/E' did not change with hypoxia. Hyperoxia reduced strain rate in 10 left ventricular segments, global systolic contraction amplitude was decreased (8.83 ± 0.38, P < 0.001 vs. normoxia) while right ventricular function was unchanged. The spectral and tissue Doppler TEI indexes were significantly increased but E/E' did not change with hyperoxia. CONCLUSION: Hypoxia improves and hyperoxia worsens systolic myocardial performance in healthy male volunteers. Tissue Doppler measures of diastolic function are unaffected by hypoxia/hyperoxia which support that the changes in myocardial performance are secondary to changes in vascular tone. It remains to be settled whether oxygen therapy to patients with heart disease is a consistent rational treatment

    A Computational Model of the Ionic Currents, Ca2+ Dynamics and Action Potentials Underlying Contraction of Isolated Uterine Smooth Muscle

    Get PDF
    Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: currents (L- and T-type), current, an hyperpolarization-activated current, three voltage-gated currents, two -activated current, -activated current, non-specific cation current, - exchanger, - pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area∶volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular computed from known fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing . This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes), the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, and phasic force. In summary, our advanced mathematical model provides a powerful tool to investigate the physiological ionic mechanisms underlying the genesis of uterine electrical E-C coupling of labor and parturition. This will furnish the evolution of descriptive and predictive quantitative models of myometrial electrogenesis at the whole cell and tissue levels

    Comparative physiology of Australian quolls (Dasyurus; Marsupialia)

    Get PDF
    Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T ^sub b^ of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C^sup -1^) and tiger quolls (0.051°C ºC^sup -1^) to substantial in northern quolls (0.100°C ºC^sup -1^) and chuditch (0.146°C ºC^sup -1^), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O^sub 2^ g^sup -1^ h^sup -1^), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H^sub 2^O g^sup -1^ h^sup -1^) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (-1.3°C), eastern (-12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls

    Glucocorticosteroids Differentially Regulate MMP-9 and Neutrophil Elastase in COPD

    Get PDF
    Background: Chronic Obstructive Pulmonary Disease (COPD) is currently the fifth leading cause of death worldwide. Neutrophilic inflammation is prominent, worsened during infective exacerbations and is refractory to glucocorticosteroids (GCs). Deregulated neutrophilic inflammation can cause excessive matrix degradation through proteinase release. Gelatinase and azurophilic granules within neutrophils are a major source of matrix metalloproteinase (MMP)-9 and neutrophil elastase (NE), respectively, which are elevated in COPD. Methods: Secreted MMP-9 and NE activity in BALF were stratified according to GOLD severity stages. The regulation of secreted NE and MMP-9 in isolated blood neutrophils was investigated using a pharmacological approach. In vivo release of MMP-9 and NE in mice exposed to cigarette smoke (CS) and/or the TLR agonist lipopolysaccharide (LPS) in the presence of dexamethasone (Dex) was investigated. Results: Neutrophil activation as assessed by NE release was increased in severe COPD (36-fold, GOLD II vs. IV). MMP-9 levels (8-fold) and activity (21-fold) were also elevated in severe COPD, and this activity was strongly associated with BALF neutrophils (r = 0.92, p &lt; 0.001), but not macrophages (r = 0.48, p = 0.13). In vitro, release of NE and MMP-9 from fMLP stimulated blood neutrophils was insensitive to Dex and attenuated by the PI3K inhibitor, wortmannin. In vivo, GC resistant neutrophil activation (NE release) was only seen in mice exposed to CS and LPS. In addition, GC refractory MMP-9 expression was only associated with neutrophil activation. Conclusions: As neutrophils become activated with increasing COPD severity, they become an important source of NE and MMP-9 activity, which secrete proteinases independently of TIMPs. Furthermore, as NE and MMP-9 release was resistant to GC, targeting of the PI3K pathway may offer an alternative pathway to combating this proteinase imbalance in severe COPD

    Determination of quantitative trait loci (QTL) for early maturation in rainbow trout (Oncorhynchus mykiss)

    Get PDF
    To identify quantitative trait loci (QTL) influencing early maturation (EM) in rainbow trout (Oncorhynchus mykiss), a genome scan was performed using 100 microsatellite loci across 29 linkage groups. Six inter-strain paternal half-sib families using three inter-strain F(1) brothers (approximately 50 progeny in each family) derived from two strains that differ in the propensity for EM were used in the study. Alleles derived from both parental sources were observed to contribute to the expression of EM in the progeny of the brothers. Four genome-wide significant QTL regions (i.e., RT-8, -17, -24, and -30) were observed. EM QTL detected on RT-8 and -24 demonstrated significant and suggestive QTL effects in both male and female progeny. Furthermore, within both male and female full-sib groupings, QTL on RT-8 and -24 were detected in two or more of the five parents used. Significant genome-wide and several strong chromosome-wide QTL for EM localized to different regions in males and females, suggesting some sex-specific control. Namely, QTL detected on RT-13, -15, -21, and -30 were associated with EM only in females, and those on RT-3, -17, and -19 were associated with EM only in males. Within the QTL regions identified, a comparison of syntenic EST markers from the rainbow trout linkage map with the zebrafish (Danio rerio) genome identified several putative candidate genes that may influence EM. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10126-008-9098-5) contains supplementary material, which is available to authorized users

    Antimicrobial proteins and polypeptides in pulmonary innate defence

    Get PDF
    Inspired air contains a myriad of potential pathogens, pollutants and inflammatory stimuli. In the normal lung, these pathogens are rarely problematic. This is because the epithelial lining fluid in the lung is rich in many innate immunity proteins and peptides that provide a powerful anti-microbial screen. These defensive proteins have anti-bacterial, anti- viral and in some cases, even anti-fungal properties. Their antimicrobial effects are as diverse as inhibition of biofilm formation and prevention of viral replication. The innate immunity proteins and peptides also play key immunomodulatory roles. They are involved in many key processes such as opsonisation facilitating phagocytosis of bacteria and viruses by macrophages and monocytes. They act as important mediators in inflammatory pathways and are capable of binding bacterial endotoxins and CPG motifs. They can also influence expression of adhesion molecules as well as acting as powerful anti-oxidants and anti-proteases. Exciting new antimicrobial and immunomodulatory functions are being elucidated for existing proteins that were previously thought to be of lesser importance. The potential therapeutic applications of these proteins and peptides in combating infection and preventing inflammation are the subject of ongoing research that holds much promise for the future
    • …
    corecore