24 research outputs found

    Skeletal Morphology of Opius dissitus and Biosteres carbonarius (Hymenoptera: Braconidae), with a Discussion of Terminology

    Get PDF
    The Braconidae, a family of parasitic wasps, constitute a major taxonomic challenge with an estimated diversity of 40,000 to 120,000 species worldwide, only 18,000 of which have been described to date. The skeletal morphology of braconids is still not adequately understood and the terminology is partly idiosyncratic, despite the fact that anatomical features form the basis for most taxonomic work on the group. To help address this problem, we describe the external skeletal morphology of Opius dissitus Muesebeck 1963 and Biosteres carbonarius Nees 1834, two diverse representatives of one of the least known and most diverse braconid subfamilies, the Opiinae. We review the terminology used to describe skeletal features in the Ichneumonoidea in general and the Opiinae in particular, and identify a list of recommend terms, which are linked to the online Hymenoptera Anatomy Ontology. The morphology of the studied species is illustrated with SEM-micrographs, photos and line drawings. Based on the examined species, we discuss intraspecific and interspecific morphological variation in the Opiinae and point out character complexes that merit further study

    Retinoic acid regulates avian lung branching through a molecular network

    Get PDF
    Retinoic acid (RA) is of major importance during vertebrate embryonic development and its levels need to be strictly regulated otherwise congenital malformations will develop. Through the action of specific nuclear receptors, named RAR/RXR, RA regulates the expression of genes that eventually influence proliferation and tissue patterning. RA has been described as crucial for different stages of mammalian lung morphogenesis, and as part of a complex molecular network that contributes to precise organogenesis; nonetheless, nothing is known about its role in avian lung development. The current report characterizes, for the first time, the expression pattern of RA signaling members (stra6, raldh2, raldh3, cyp26a1, rar alpha, and rar beta) and potential RA downstream targets (sox2, sox9, meis1, meis2, tgf beta 2, and id2) by in situ hybridization. In the attempt of unveiling the role of RA in chick lung branching, in vitro lung explants were performed. Supplementation studies revealed that RA stimulates lung branching in a dose-dependent manner. Moreover, the expression levels of cyp26a1, sox2, sox9, rar beta, meis2, hoxb5, tgf beta 2, id2, fgf10, fgfr2, and shh were evaluated after RA treatment to disclose a putative molecular network underlying RA effect. In situ hybridization analysis showed that RA is able to alter cyp26a1, sox9, tgf beta 2, and id2 spatial distribution; to increase rar beta, meis2, and hoxb5 expression levels; and has a very modest effect on sox2, fgf10, fgfr2, and shh expression levels. Overall, these findings support a role for RA in the proximal-distal patterning and branching morphogenesis of the avian lung and reveal intricate molecular interactions that ultimately orchestrate branching morphogenesis.The authors would like to thank Ana Lima for slide sectioning and Rita Lopes for contributing to the initiation of this project. This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the Project POCI-01-0145-FEDER-007038; and by the Project NORTE-01-0145- FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
    corecore