10 research outputs found
Photographic networks for fireballs
Photographic networks in United States and Czechoslovakia for bright meteor observatio
How to build a continental scale fireball camera network
The expansion of the Australian Desert Fireball Network has been enabled by the development of a new digital fireball observatory based around a consumer digital camera. The observatories are more practical and much more cost effective than previous solutions whilst retaining high imaging performance. This was made possible through a flexible concurrent design approach, a careful focus on design for manufacture and assembly, and by considering installation and maintenance early in the design process. A new timing technique for long exposure fireball observatories was also developed to remove the need for a separate timing subsystem and data integration from multiple instruments. A liquid crystal shutter is used to modulate light transmittance during the long exposure which embeds a timecode into the fireball images for determining fireball arrival times and velocities. Using these observatories, the Desert Fireball Network has expanded to cover approximately 2.5 million square kilometres (around one third of Australia). The observatory and network design has been validated via the recovery of the Murrili Meteorite in South Australia through a systematic search at the end of 2015 and the calculation of a pre-atmospheric entry orbit. This article presents an overview of the design, implementation and performance of the new fireball observatories
Impact Craters and Meteorites: The Egyptian Record
This chapter provides an account of the present Egyptian impact cratering record as well as an overview of the Egyptian meteorite collection. The 45-m-diameter Kamil crater in the East Uweinat District in southwestern Egypt is so far the only confirmed impact crater in Egypt. Due to its exceptional state of preservation Kamil can be considered a typestructure for small-scale impacts on Earth. Enigmatic types of natural glasses including the Libyan Desert glass found in the Great Sand Sea and the Dakhleh glass found near Dakhla Oasis (note that Dakhla, Dakhleh and Dakhla are synonyms) may be products of low-altitude airbursts of large and fragile cometary or asteroidal impactors. A number of circular, cratershaped geological structures superficially resembling impact craters are discussed. To date the Egyptian meteorite collection totals 2 falls, including the ~10 kg Martian meteorite Nakhla that has served as a keystone for the understanding of magmatic differentiation processes on Mars, and 76 finds. With the exception of a minority of incidental findings, most Egyptian meteorite finds (~75%) were recovered over the last ~30 years from three dense meteorite collection areas, namely the El-Shaik Fedl, Great Sand Sea and Marsa Alam fields. The exceptional exposures of the Precambrian basement and Paleozoic to Cenozoic sedimentary covers in Egypt offer a good opportunity for the identification of new impact structures. Likewise, Egypt’s vast rocky desert surfaces are of great potential for the collection of meteorites through systematic searches. These prospects are fundamental ingredients for fostering the ongoing development of meteoritics and planetary science in Egypt as disciplines for future scientific endeavor in Africa